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Imaging genetics study of 112 subjects from the Alzheimer’s
Disease Neuroimaging Initiative.

Examine resting-state fMRI (rs-fMRI) and genetic data obtained
from these subjects, where each subject is classified as either
cognitively normal (CN), as having mild cognitive impairment
(MCI), or as having Alzheimer’s Disease (AD).

Our goal is to examine the relationship between e↵ective brain
connectivity and genetics in relation to disease.
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fMRI measures the amount of oxygenated versus deoxygenated
blood in di↵erent parts of the brain

Since neural activity requires oxygen to be delivered to active
parts of the brain through blood flow, this measurement is a
proxy or indirect measurement of neural activity

We are measuring the metabolic demands of active neurons as a
proxy for the actual electrical neural activity
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This gives relatively low temporal resolution (TR ⇠ 2s) but high
spatial resolution (1 cubic millimeter voxels/ 1 million voxels in a
high resolution brain scan)

Yunlong Nie, Laila Yasmin, Yin Song, Vanessa Scarapicchia Jodie Gawryluk, Liangliang Wang, Jiguo Cao, Farouk Nathoo (short)DCM + DMN + Genetics 5 / 52



Task-based fMRI: the subject is stimulated by some paradigm
(e.g. visual or auditory stimulus) and fMRI can be used to
examine active brain regions used to process stimuli and plan a
response

Resting-state fMRI: no stimulus and therefore likely no
overwhelmingly strong signal in localized regions; fMRI
measurements in this case typically used to characterize regional
interactions - connectivity
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We use Dynamic Causal Modeling (DCM; Li et al., 2011; Friston
et al., 2003; Friston et al., 2014; Razi et al., 2015; Friston et al.,
2017) applied to rs-fMRI time series in order to estimate a
directed network representing e↵ective brain connectivity within
the default mode network (DMN).

The DMN is a key a network commonly known to be active
when the brain is at rest.

These networks are then related to genetic data and Alzheimer’s
disease.

Ours is the first imaging genetics study to use DCM as a
neuroimaging phenotype and this is one novel aspect of the
study.

Ours is also the first imaging genetics study to use the Bayes
factor for examining evidence for genetic e↵ects.
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In putting together the analysis we have developed a new
pipeline for connectome genetics which can be applied generally
to examine the relationship between brain connectivity and
genetics in relation to disease.
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The selection criteria for our study: We first begin with ADNI2
subjects (1437 at this stage) and considered those subjects also
having genome-wide data (774 left at this stage) and also with
at least one resting-state fMRI scan at 3T (112 subjects).

The 112 subjects comprise 37 CN, 63 MCI and 12 AD subjects,
with these subjects having a mean age of 73.8 years with the
range being 56.3-95.6 years, 46 of these subjects being male, 5
being left-handed, and with education measured in years ranging
from 11 to 20.
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Table: Distribution of Demographic Variables

AD MCI NL p-value
n 12 63 37
PTGENDER (%) Female 8 (66.7) 34 (54.0) 23 (62.2) 0.640

Male 4 (33.3) 29 (46.0) 14 (37.8)
PTHAND (%) Left 1 ( 8.3) 2 ( 3.2) 2 ( 5.4) 0.507

Right 11 (91.7) 61 (96.8) 35 (94.6)
Age (mean (sd)) 75.82 (7.91) 72.70 (7.66) 75.22 (6.68) 0.165
PTEDUCAT (mean (sd)) 16.33 (2.53) 16.06 (2.66) 16.30 (2.21) 0.874
APOE Gene No.e4 (%) Zero 1 ( 8.3) 35 (55.6) 24 (64.9) 0.0052

One 9 (75.0) 22 (34.9) 12 (32.4)
Two 2 (16.7) 6 ( 9.5) 1 ( 2.7)
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For these subjects we examine e↵ective connectivity based on
their baseline rs-fMRI scan.

Functional Connectivity: refers simply to the correlation between
measured time series over di↵erent locations.

E↵ective Connectivity: directional time-lagged connectivity or
the influence one neuronal system exerts over another.
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Our study examines e↵ective connectivity across four DMN regions.

Figure: The locations of the four regions within the default mode network
(DMN) examined in our studies: the medial prefrontal cortex (mPFC), the
posterior cingulate cortex (PCC), the left and right intraparietal cortex
(LIPC and RIPC).

Yunlong Nie, Laila Yasmin, Yin Song, Vanessa Scarapicchia Jodie Gawryluk, Liangliang Wang, Jiguo Cao, Farouk Nathoo (short)DCM + DMN + Genetics 12 / 52

farouknathoo
Highlight

farouknathoo
Highlight



We estimate resting-state e↵ective connectivity for fMRI using a
variant of DCM known as spectral DCM.

Use of DCM as an endophenotype is justified by the work of Xu
et al. (Cerebral Cortex, 2017) who use DCM applied to rs-fMRI
in a twin study in order to identify the genetic and environmental
contribution to resting-state e↵ective connectivity in the DMN.

These authors estimate the heritability of e↵ective resting-state
connectivity within the DMN (same four regions) as 0.54 and
thus suggest that the genes have an influence on e↵ective
resting-state connectivity.
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The fMRI and anatomical data are pre-processed using a
combination of the FSL and SPM12 software.

As part of this each subject’s anatomy is normalized to a
standardized space defined by a Montreal Neurological Institute
(MNI) template brain.

BOLD time series from the DMN regions of interest are obtained
by extracting time series from all voxels within an 8mm radius of
the associated MNI coordinate, and then applying a principle
component analysis and extracting the first eigenvariate.
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fMRI Preprocessing

Slice timing correction: the entire brain volume is not sampled
at the same instant in time; di↵erent layers of the volume are
sampled at di↵erent time points during TR

Slice timing correction: shifts the measured time course at each
voxel by a small amount so that after correction we can assume
all voxels are sampled at the same time

Realignment: realign images to account for motion correction
during the scan

Normalization: refers to the coregistration of a subject’s image
to a standard template space (shape normalization across
subjects)

Coregistration: alignment of functional and structural images
from the same subject to map functional (brain activity)
information into anatomical space
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Figure: The steps involved in preprocessing the fMRI data and obtaining
an e↵ective brain connectivity network.
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Figure: An example of the rs-fMRI data obtained from a single subject
from the four regions of interest (PCC, mPFC, LIPC, RIPC).
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Given observed time series at R regions
y(t) = (y1(t), . . . , yR(t))0, DCM is a state space model specified
as follows:

ẋ(t) = Ax(t) + v(t)

y(t) = h(x(t),✓) + e(t)

x(t) = (x1(t), . . . , xR(t))0 are latent variables used to represent
the states of neuronal populations at some time t and ẋ(t) is a
time derivative defining a di↵erential equation approximating
neuronal dynamics
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y(t) = (y1(t), . . . , yR(t))0, DCM is a state space model specified
as follows:

ẋ(t) = Ax(t) + v(t)

y(t) = h(x(t),✓) + e(t)

The di↵erential equation approximating the dynamics for
neuronal states represents a first-order Taylor approximation for
an underlying non-linear biophysical model; A represents the
Jacobian matrix for the function defining the nonlinear dynamics;
its estimation allows us to characterize (to first-order) the
e↵ective connectivity to first-order ! this gives us the network
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Given observed time series at R regions
y(t) = (y1(t), . . . , yR(t))0, DCM is a state space model specified
as follows:

ẋ(t) = Ax(t) + v(t)

y(t) = h(x(t),✓) + e(t)

h(x(t),✓) is a nonlinear mapping from neuronal states to the
haemodynamic response also depending on parameters ✓ (see,
e.g., Friston, 2007, Neuroimage)

v(t) and e(t) represent neuronal and measurement noise
respectively
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For resting-state fMRI this stochastic DCM model can be fit in
the time-domain using a mean-field variational Bayes approach
(see, e.g., Li et al., 2011, Neuroimage) which involves inference
on both model parameters and latent states.

The model can also be fit in the spectral domain using an
approach known as spectral DCM (Friston et al., 2014,
Neuroimage).

The latter approach is somewhat akin to a method of moments
approach where the theoretical cross spectra associated with the
dynamic model is equated with the sample cross spectra.

Developed in Friston et al. (2014), it assumes a parameterized
power law form for the spectral densities of the noise terms in
the state-space model and then express the empirical cross
spectra as the sum of the theoretical cross spectra and Gaussian
error.
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This then yields a Gaussian likelihood for the empirical cross
spectra depending on the time-invariant parameters but not
depending on the latent variables x(t). This likelihood is then
combined with a prior distribution for these parameters and an
approximation to a posterior distribution for these parameters is
obtained using variational Bayes.

Interestingly, Razi et al. (2015, Neuroimage) report simulation
results that demonstrate estimators obtained from spectral DCM
having higher accuracy (in the sense of mean-squared error)
than those obtained from stochastic DCM. In addition the
former has a higher computational e�ciency since estimation of
the latent states is not required.
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Figure: Average connectivity weights, left to right: normal controls, MCI,
AD.

1 Average estimated connection from RIPC to LIPC is higher for
subjects with AD (0.396) when compared with subjects having
MCI (0.097) and NC subjects (0.067).

2 Average connectivity from PCC to MPFC is higher for AD
subjects (0.272) than MCI (0.00) and NC (-0.048) subjects.
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Next use regression to examine association between disease
status and connectivity at each edge of the network.

Fit a set of 16 linear models where each model corresponds to
one edge in the network; the response for each regression model
is the value associated with that edge as estimated by spectral
DCM.

Here we have 112 networks, 16 edges; disease group
(CN/MCI/AD) is included in each model as a categorical
variable

Additional variables representing age, gender, right/left
handedness, and education are included to adjust for potential
confounding.

An F-test is conducted at each edge to assess the significance of
disease on e↵ective connectivity at that given edge.
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In our case the smallest p-values across the network correspond
to p = 0.081 for the connection from RIPC to LIPC, and
p = 0.087 for the connection from PCC to mPFC.

Figure: Network of FDR adjusted p-values from an analysis of covariance
testing for the e↵ect of disease group on edge weight while adjusting for
age, gender, right/left hand, and education. The self-connections have
FDR adjusted p-values 0.991 (LIPC), 0.991 (RIPC), 0.991 (PCC) and
0.991 (mPFC).
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Figure: Network of FDR adjusted p-values from an analysis of covariance
testing for the e↵ect of disease group on edge weight while adjusting for
age, gender, right/left hand, and education.

The point estimates suggest the connections from RIPC to LIPC
and PCC to mPFC may be higher in those subjects with AD.
After correcting for multiple comparisons the FDR adjusted
p-values do not indicate an association between connection
strength and disease at any connection.
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Study II: We next examine the relationship between the
probability of disease and genetics.

The freely available software package PLINK (Purcell et.al.,
2007) was used for genomic quality control.

The genetic data are SNPs from non-sex chromosomes, i.e.,
chromosome 1 to chromosome 22.

SNPs with minor allele frequency less than 5% are removed as
are SNPs with a Hardy-Weinberg equilibrium p-value lower than
10�6 or a missing rate greater than 5%.

After preprocessing we are left with 1,220,955 SNPs for each of
the 112 subjects.
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We conduct a genome-wide association study (GWAS) with the
goal of identifying a smaller subset of SNPs that are related to
disease (CN/MCI/AD).

A multinomial logistic regression with disease category as the
response is fit for each SNP to assess that SNPs marginal
association with disease.

We adjust adjusting for covariates representing age, sex, right
hand or left hand, and education.

We sort the SNPs by the resulting p-values from a likelihood
ratio test, where the null hypothesis corresponds to the case
where the probability distribution of disease does not depend on
the given SNP.

A subset of the top 100 SNPs is selected based on this ranking.
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The distribution of p-values by chromosome and the cut-o↵ for
selecting the best subset of 100.

Figure: The p-values associating disease status with SNPs adjusting for
age, sex, right or left hand and education. The blue line represents the
cuto↵ used to obtain the top 100 SNPs.
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To jointly assess the e↵ect of the 100 priority SNPs, we include
these variables along with potential confounders as covariates
and the disease status (CN/MCI/AD) as the response in a new
symmetric multinomial logistic regression with LASSO penalty.

The goal is to jointly identify the SNPs that are most related to
disease using LASSO.

Yunlong Nie, Laila Yasmin, Yin Song, Vanessa Scarapicchia Jodie Gawryluk, Liangliang Wang, Jiguo Cao, Farouk Nathoo (short)DCM + DMN + Genetics 29 / 52



To jointly assess the e↵ect of the 100 priority SNPs, we include
these variables along with potential confounders as covariates
and the disease status (CN/MCI/AD) as the response in a new
symmetric multinomial logistic regression with LASSO penalty.

The goal is to jointly identify the SNPs that are most related to
disease using LASSO.

Yunlong Nie, Laila Yasmin, Yin Song, Vanessa Scarapicchia Jodie Gawryluk, Liangliang Wang, Jiguo Cao, Farouk Nathoo (short)DCM + DMN + Genetics 29 / 52



We use the glmnet software (Friedman et al., 2010) to fit the
LASSO-penalized symmetric multinomial logistic regression
model containing the top 100 SNPs and potential confounders.

The model relates the probability of each class of disease to
these variables (linear on log-odds scale).

The Lasso penalty parameter is selected using 10-fold cross
validation.
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CN - Top SNPs MCI - Top SNPs AD - Top SNPs

ID �̂ ID �̂ ID �̂
kgp324005 G 1.26 rs341080 T -2.39 kgp5568290 G 1.88
rs175174 G -0.93 rs442277 A -1.62 rs7617199 A 1.36
rs9346859 C 0.90 kgp10950119 T 1.07 kgp239829 C 1.33
rs2759295 G -0.86 rs4875544 T 0.96 rs10900494 G -1.21
rs2929981 G 0.83 kgp8323161 C 0.92 rs7781597 C 1.00

Table: Table of estimates showing the top five SNPs for each disease
category along with the estimated regression coe�cient from multinomial
logistic regression with Lasso penalty.

These findings suggest that SNPs kgp5568290, rs7617199 and
kgp239829 have the largest estimated e↵ects on the log-odds of AD.
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Note: our top subset of 100 SNPs did not contain any from the
APOE gene.

Our data have two SNPs rs769449 and kgp2187574 that are
located within the range of gene APOE (chr19:45409039,
chr19:45412650).
The individual associations between these two SNPs with the
disease are not found to be significant, where the specific results
are p-value = 0.07 for rs769449 and p-value = 0.57 for
kgp2187574.
As a result, neither of these two APOE SNPs are within the top
100 SNPs that we have identified and included in the larger
model as their rank is quite low.
If we define APOE related SNPs as those within a 1 million base
pair range of APOE, we find 503 SNPs with p-values between
0.0005 and 0.99. In this case none of these 503 SNPs fall within
the top 100 SNPs, though the highest rank among these is a
rank of 1002 obtained by SNP kgp3912453.
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Given this, we look for more SNPs that might not be in the
neighbourhood of APOE, but may still be related to the APOE
SNPs.

To do this we start with the top 100 SNPs that are associated
with disease status and we correlate them with the first principal
component obtained from those 503 SNPs that are in the 1
million base pair window of APOE.

In this case the largest correlation is only about 0.28.

Out of the 1,220,955 SNPs there are no APOE SNPs in our top
100.
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We do have the expected APOEe4 signal in our data but APOE
SNPs do not make it into our top 100 SNPs.

Table: Distribution of Demographic Variables

AD MCI NL p-value
n 12 63 37
APOE Gene No.e4 (%) Zero 1 ( 8.3) 35 (55.6) 24 (64.9) 0.0052

One 9 (75.0) 22 (34.9) 12 (32.4)
Two 2 (16.7) 6 ( 9.5) 1 ( 2.7)
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Brain Connectivity ⇠ Genetics: We relate the resting-state
e↵ective connectivity networks estimated using DCM to each of
the 100 priority SNPs using the multivariate approach proposed
in Marchini et al. (2007).

This approach tests for SNP e↵ects on a multi-dimensional
phenotype using the Bayes factor. The test is based on the
linear model

yi = xi� + ei , ei
iid⇠ N16(0,⌃)

where yi = (yi1 , . . . , yi16)
T denotes the vector of residual

estimated brain connectivity edges for the ith individual.

Residual connectivity is calculated by subtracting a baseline term
based on linear regression estimates of an overall mean and the
e↵ects of covariates sex, age, left or right hand and education

xi represents the number of a particular allele for a given SNP
for the i th individual; � = (�1, . . . , �16)T are the parameters
relating this SNP to all of the edge values of the network.
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xi represents the number of a particular allele for a given SNP
for the i th individual; � = (�1, . . . , �16)T are the parameters
relating this SNP to all of the edge values of the network.
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The null model corresponds to H0 : � = 0. The alternative is
H1 : 9j , s.t. �j 6= 0.

The Bayes factor (Kass and Raftery, 1995; Wagenmakers, 2007;
Masson, 2011; Nathoo and Masson, 2015) is used to assess the
evidence in favour of H1.

The Bayes factor is defined by the ratio of marginal likelihoods
BF = m(y |H1)/m(y |H0), and quantifies the strength of evidence
in favour of H1; that is, the hypothesis that at least one network
edge depends on the included SNP.

The model is fit and the Bayes factor computed separately for
each of the 100 priority SNPs.
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The top 10 SNPs with the corresponding values of their Bayes factor.

SNP id Bayes Factor
rs11036476 69.18
kgp239829 54.95
rs4910743 14.13
rs7482144 11.75
rs2855039 10.96
kgp10652659 10.23
kgp3458705 9.55
kgp5413383 6.61
kgp4994042 6.61
kgp161879 6.46

Table: The top 10 SNPs (based on the value of the Bayes factor) related
to e↵ective brain connectivity within the four regions of the DMN
considered. These SNPs are selected from the 100 SNPs identified as
most related to disease in Study II.
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There are two distinct SNPs, rs11036476 (Bayes factor = 69.18)
and kgp239829 (Bayes factor = 54.95), which give values of the
Bayes factor indicating very strong evidence that e↵ective
connectivity in the DMN depends on these SNPs.

Among the top 10 SNPs these two SNPs have Bayes factors
that are noticeably larger than the others.

As we shall see, they both correspond to the same genetic signal
from chromosome 11 from two neighbouring SNPs in high
linkage.
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Importantly, SNP kgp239829 was also one of the top three SNPs
found related to AD.

Table: Study III: E↵ective Connectivity ⇠ Genetics

SNP id Bayes Factor
rs11036476 69.18
kgp239829 54.95

rs4910743 14.13
rs7482144 11.75
rs2855039 10.96
kgp10652659 10.23
kgp3458705 9.55
kgp5413383 6.61
kgp4994042 6.61
kgp161879 6.46

Table: Study II: Disease ⇠ Genetics

CN - Top SNPs MCI - Top SNPs AD - Top SNPs

ID �̂ ID �̂ ID �̂
kgp324005 G 1.26 rs341080 T -2.39 kgp5568290 G 1.88
rs175174 G -0.93 rs442277 A -1.62 rs7617199 A 1.36
rs9346859 C 0.90 kgp10950119 T 1.07 kgp239829 C 1.33

rs2759295 G -0.86 rs4875544 T 0.96 rs10900494 G -1.21
rs2929981 G 0.83 kgp8323161 C 0.92 rs7781597 C 1.00
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To further investigate what specific connection in the networks
depend on each SNP, we conduct a posthoc analysis
independently for each of the two top SNPs.

We associate each edge value to a given SNP by fitting a linear
regression of the edge value onto the SNP while also including
covariates representing sex, age, left or right hand and education.

The importance of the given SNP to each edge is then
summarized through a p-value from an F-test.
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Examining the networks for both SNPs and the p-values arising
from the posthoc analysis relating each SNP to the 16 specific
connections of interest, we find looking at both networks that
these two SNPs are both strongly related to the same
connections

MPFC ! LIPC (rs11036476, p-value = 0.0055; kgp239829,
p-value = 0.0052) and LIPC ! RIPC (rs11036476, p-value =
0.0058; kgp239829, p-value = 0.0063)
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Figure: The FDR adjusted p-values obtained from F-tests associating
e↵ective connectivity between the brain regions of interest with each of
the top two SNPs, rs11036476 (Bayes factor = 69.18) and kgp239829
(Bayes factor = 54.95), where the top 2 SNPs are identified by applying a
multivariate linear model and the Bayes factor.
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Investigating further, we find that both rs11036476 and
kgp239829 are very close to each other on chromosome 11 and
their sample correlation is close to ⇢̂ = 1, so that both SNPs
represent the same genetic signal from chromosome 11 onto
DMN connections MPFC ! LIPC and LIPC ! RIPC.

As noted earlier, this same signal is also related to AD and thus
suggests a potential a biomarker for AD that may have a
relationship to DMN connections MPFC ! LIPC and LIPC !
RIPC.

Worth noting that the SNP with the third highest value of the
Bayes factor rs4910743 (Bayes factor = 14.13) also exhibits a
high correlation of ⇢̂ ⇡ 0.93 with the top two SNPs and its
network obtained from a posthoc analysis exhibits a very similar
pattern.
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This further suggests the same genetic signal potentially related
to AD and potentially modulating DMN connections MPFC !
LIPC and LIPC ! RIPC. Study III: Potential path of
information flow within the brain related to the identified c11
signal. Study II: The same genetic signal is identified by
LASSO as potentially associated with Alzheimer’s disease.
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We also note that while only one (kgp239829) of the top three
SNPs with highest Bayes factors is also listed as having a large
estimated e↵ect on the probability of AD, this is likely the result
of a well known property of LASSO.

Namely, the property of the LASSO to choose only one of a
group of highly correlated predictors to include in the model and
drop the others.
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ID �̂ ID �̂ ID �̂
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Chromosome 11
Signal on DMN


Single Representative SNP Picked by Lasso 



Top 3 SNPs related to DMN brain connectivity all from chromosome
11 and all in very high linkage. This genetic signal is also found by
LASSO to be related to the probability of AD.

Table: Study III: E↵ective Connectivity ⇠ Genetics

SNP id Bayes Factor
rs11036476 69.18

kgp239829 54.95

rs4910743 14.13

rs7482144 11.75
rs2855039 10.96
kgp10652659 10.23
kgp3458705 9.55
kgp5413383 6.61
kgp4994042 6.61
kgp161879 6.46
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Summary:

We have developed a connectome genetics pipeline with two key
innovations:

1 It is the first example of the use of DCM in imaging genetics
2 It is the first use of the Bayes factor in imaging genetics

Starting with 1,220,955 SNPs, we have found a genetic signal
from chromosome 11 that in separate analyses looking at
di↵erent traits is found to both modulate the probability of AD
and e↵ective connectivity in the DMN.
Some caution is required here since the number of AD subjects
in our study is low.

1 The result for AD is based on LASSO with nAD = 12 in this
category for the multinomial logistic regression and n = 112
subjects in the model.

2 The results for e↵ective connectivity are based on the Bayes
factor (n = 112).

3 In our current work we are examining replication and stability.
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We have only considered baseline rs-fMRI data (n = 112 scans)
and the resulting brain networks in this study.

Longitudinal rs-fMRI data are available (n ⇡ 500 scans) from
ADNI2 and we are working on a longitudinal analysis linking
each subject’s time sequence of e↵ective connectivity networks
to genetics.

Estimate white matter connectivity from di↵usion tensor imaging
data and link to genetics using the pipeline developed here.
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Statistical Issues

Incorporate shrinkage estimation for e↵ective connectivity
networks

Incorporate detection of weak genetic signals and investigate
interactions

Interesting but perhaps not extremely useful: use the DTI data
for subjects that have it to parameterize a computer model that
will simulate rs-fMRI data. Then combine the real rs-fMRI data
with the computer model generate data.

1 Combine the real and simulated fMRI data and run the pipeline
as is.

2 Develop an approach for optimal bias-variance trade-o↵ in the
analysis of the combined data. This is often done in climate
modelling but has not for neuroimaging.
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will simulate rs-fMRI data. Then combine the real rs-fMRI data
with the computer model generate data.

1 Combine the real and simulated fMRI data and run the pipeline
as is.

2 Develop an approach for optimal bias-variance trade-o↵ in the
analysis of the combined data. This is often done in climate
modelling but has not for neuroimaging.
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Look at other resting-state networks - e↵ective connectivity ⇠
genetics:

1
Extended Default Mode Network: Posterior
cingulate/Precuneus, Medial Prefrontal, Left lateral parietal,
Right lateral parietal, Left inferior temporal, Right inferior
temporal, left hippocampus, right hippocampus

2
Executive Control Network: right dorsolateral prefrontal
cortex, Left dorsolateral prefrontal cortex, right ventrolateral
prefrontal cortex, left ventrolateral prefrontal cortex, right
medial prefrontal cortex (mPFC), right caudate nucleus (CAU),
right lateral parietal (LP), left lateral parietal (LP)
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