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Electronic Schrodinger equation

Dirac 1929: Chemically specific behaviour of atoms and molecules
captured, "in principle”, by quantum mechanics.

Emission/absorption spectra, binding energies, equilibrium geometries, interatomic forces (— materials science),...

Born-Oppenheimer approximation, statics, N electrons —> need to find
Ey, Wo = lowest e-value/e-state of Schrodinger operator

HegYa T S

1<I<J<N vi

T Vee Vie

actlng on Ve 2 ((R3xZ)N;C), ||W|[;2=1.
: R® — R external potential, e.g. v(r) = — Z:\;’:l Zy/|r — Ral.

|W(r1, s1, .., ry, sy)|? = N-point probability density
of positions and spins (Born formula)

Key collective variable: electron density

p(r1) = NZsl,..,sNEZZ J1Y(ry, 51, I, SN)[2dra..dry



Curse of dimension — DFT

Pb. with N-electron Schrodinger equation: curse of dimension
discretize R —10 gridpts

single CO, molecule: [?(R3N) = [2(R%) — 103V = 10 gridpts.
DFT: approximate the Schrodinger eq. by systems of equations /
variational principles based on the single-particle density.



Physics community: idea of constrained search

Levy 1979: assuming that a lowest e-value/e-state of H exists,

0T \|uT|i2n <w’T+Vee+Vext|"’> (Rayleigh-Ritz)
=1

— min min<w|T+ Vee + Vo |W
p Vi=p

= mpin( \rJ]’Lr;)(\U\T+ VeelV) + /R3v(r)p(r)dr >

~ |
Levy-Lieb functional ritjs)  chemically specific part
universal part

Lieb 1983: rigorous formulation in function spaces; proof that the
inner minimum is attained

inner min. over {W & HY((R3 x Z,)V) : W antisymm., ¥ — p}

outer min. over {p : /p € HY(R3), p >0, /p = N}



Density scaling
For any given density p, consider its dilation p,(r) := a9p(ar) (a > 0)
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Levy/Perdew '85: density scaling doesn't commute with constrained

search. ]
p——% pa(r) = a~p(ar)

“En;rL (\Il(,y?T+(yVee|lU>i wT»i;Ta (V| T+ Ve |V)
“FW[pal(L.s)  scale back
o pal(E,s scale bac
=V, > \U[pa]

High-density regime (a > 1) Kinetic energy dominates
Fuulel = o min (W|TIV).
Vi—p
Low-density regime (« < 1) Interaction energy dominates
Filpl = a inf <1U|Vee|\lf>.
Vi—p

The optimal wavefunctions look completely different in both regimes.



What does the constrained-search wavefunction look like?
Simulation, H.Chen/GF, Multisale Model. Simul., 2015 (Quasi-Newton + FEM-FCI)

p 1D 'lump’, width a1, N electrons,
p(x) = a2—’\£(1 + cos(agrx)), x € [-L/a, L/a] N

Shown: Pair density
p2(x1,%2) =g avezs S S WXL, o XN, 81, -, 5w Pdxs . dxy




Sparsity
Recall p arbitrary density, p,(r) = oa3p(ar), ¥, = argmin(V|aT + V. |V)
Vi—p

High-density (weak-interaction) limit o — oo (implicit Kohn/Sham 1965)

expect lim W, = antisymmetriz. of p1(r1,s1) - on(rn, Sn)
o—r 00

maths: N scalar functions ; : R3 x Z, — C which are [2-orthonormal
physics: N Kohn-Sham orbitals, i.e. minimal kin.en. s/to >, _|¢i[?> =p
Data/storage complexity: N - £, £=no. of single-particle basis functions

Low-density (strong-interaction) limit & — 0 (Seidl 1999)

: . p(r
hope OIllgn0 Z |V, |? = symmetriz. of%é(rg—TQ(rl)) < 8(rn—Tp(r1))

S15-+3SN

maths: N maps T; : R® — R3 which transport p to p
physics: N co-motion functions, strictly correlated electrons (SCE)
Data/storage complexity (if ansatz justified): N - ¢, £=no. equi-mass cells



Plugging the sparse ansatz into the constrained-search

Weak interaction limit: Kohn-Sham ansatz reduces miny,,,(V|T|V¥) to

N N
min{2/3 1Veil? /3 ©rei =6 > > lpi(r,s)]> = p(r) for all r}.
i=1 R3%xZo R3 %X Zo =1 s

Minimum value: Kohn-Sham kinetic energy functional T[p].

Strong interaction limit: SCE ansatz reduces infy,,,(WV|Vee|V) to

. r
inf{ s pl(V) Z m dr : Tq,.., Ty push p forward to p}.
1<i<j<N

Infimum value: SCE functional V2E[p]. Mathematically, this is a very
challenging optimal transport problem (multi-marginal; non-convex cost;
Monge form).



Rigorous formulation of strong-interaction limit
Cotar/GF /Klippelb. arXiv 2011, CPAM 2013; Buttazzo/Gori-Giorgi/DePascale, PRA 2012
The problem
inf (W[ Vee| V) (1)
Vi—p
on L2 .((R® x Zy)N) (square-integrable functions) has no minimizer, as W
tries to concentrate on lower-dimensional sets.

Way out: consider the interaction energy

1
V|V V) = W(ry,..,rN, 51,0 50)|2 dri..d
WVe¥) = [ 3 W) 3 1. dew

v —rjl
S1,.,SNEZL2 1<i<j<N

=y

as a function of the N-point position density v € L}(R3V), and enlarge
LI(R3N) (integrab|e fUnCtiOnS) tO measures (e.g., delta functions on curves/surfaces):

min ———dy(r1, -, rn) (2)
Y=p /R:':N1<i<j<N|r,~ — I’J'l 7Y

on Ps,m(IR3V) (symmetric probability measures on R3V), where v — p
means f(R3),-,1xA_X(R3)Nd'y = [, & for all A; C R? (equal marginals p/N).

Problem (2) is well-posed, and a Kantorovich optimal transport problem. 9



Constraint-search wavefunctions vs. Opt.Tr./SCE
Huajie Chen, GF, Multiscale Model. Simul. 2015

p 1D 'lump’, width a1, N electrons,
p(x) = a2—’\£(1 + cos(agrx)), x € [-L/a, L/a] N

Shown: Pair density
p2(x1,%2) =g avezs oS WXL, o XN, 81, -, 5w Pdxs . dxy
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Constraint-search minimizers converge to optimal plans

physically expected, subtle maths (marginal-preserving smoothing of transport plans)

Cotar/GF /Kliippelberg 2013: N=2
Cotar/GF /Kliippelberg, Bindini/DePascale, Lewin (all arXiv 2017): general N
Our version:

Theorem: For any p, the constrained-search minimizers

V, = argmin(V|aT + Ve|V) satisfy, up to subsequences,
Wi—p

lim Y W=~
a—0
S1,.-,SNEZ2

for some minimizer « of optimal transport with Coulomb cost, the
limit being weak* convergence of probability measures.

In fact, the constrained-search problem Gamma-converges to OT with Coulomb cost.



Different formulations of strongly correlated limit of DFT
Original constrained-search for electron repulsion

inf (V[ Voo ) (1)

WEL2 ((R3xZa)N)), Wisp

anti

(ill-posed, curse of dimension),

min /]R3N Z i |d7(r1a "7rN) (2)

R3N). ~i— r rj
YEPgym(R3N), y—p 1§i<j§N" j

(Kantorovich OT, well posed [CFK, BDG], curse of dimension still there),

N

max{N/R3 v(p(r) Y v < Y ﬁll for all (ry,..,rn)} (3)

i—1 1<icg<n Fi T
(dual Kantorovich, well posed [BDG], curse of dimension in constraint),

inf{ Rgpl(\/r) Z

1<i<j<

ﬁ dr : Ty,.., Ty transport p to p}  (4)
N

(SCE/Monge OT, not known if well-posed, curse of dimension gone).



Different formulations of strongly correlated limit of DFT
Original constrained-search for electron repulsion

inf (V[ Voo ) (1)

WEL2 ((R3xZa)N)), Wisp

anti

(ill-posed, curse of dimension),

min /]R3N Z i |d7(r1a "7rN) (2)

R3N). ~i— r rj
YEPgym(R3N), y—p 1§i<j§N" j

(Kantorovich OT, well posed [CFK, BDG], curse of dimension still there),

N

max{N/RB v(p(r) Y v < Y ﬁll for all (ry,...ra)} (3)

i—1 1<icg<n Fi T
(dual Kantorovich, well posed [BDG], curse of dimension in constraint),

inf{ Rgpl(\/r) Z

1<i<j<

ﬁ dr : Ty,.., Ty transport p to p}  (4)
N

(SCE/Monge OT, not known if well-posed, curse of dimension gone).
Fundamental math question: When is the SCE/Monge ansatz exact, i.e.

when does Kantorovich OT admit a minimizer of SCE/Monge form?
13



Rigorous results, optimal transport with Coulomb cost
Find optimal arrangement (N-body prob.distr.) of N particles in RY
given their 1-body density p

min

"/E'Psym(RN'd)

y=p/N

/Nd Z Ixi — xj|~* dvy(x1,..,xn) (0 <a<d)
R

Symmetric: (A1 X - -+ X An) = Y(Ag(1) X - - X Ag(ny) for all perm’s

v p/N: y(RY x -+ x Ajx -+ xRY) = [, pforalli, pe L}(RY)
N=2 unique min., of Monge form?)
2 < N < oo | unique min., Monge form? | example of non-Monge min.3)
N = unique min., non-Monge?

plx1)

Monge: y(xi, .., xny) =symmetrization of 557, () (X2) - - - 075, q) (Xn)
for N — 1 maps T, ..., Ty transporting p to itself

14



Rigorous results, optimal transport with Coulomb cost
Find optimal arrangement (N-body prob.distr.) of N particles in RY
given their 1-body density p

min

"/E'Psym(RN'd)

y=p/N

/Nd Z Ixi — xj|~* dvy(x1,..,xn) (0 <a<d)
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Symmetric: (A1 X - -+ X An) = Y(Ag(1) X - - X Ag(ny) for all perm’s

v p/N: y(RY x -+ x Ajx -+ xRY) = [, pforalli, pe L}(RY)
N=2 unique min., of Monge form?)
2 < N < oo | unique min., Monge form? | example of non-Monge min.3)
N = unique min., non-Monge?

plx1)

Monge: y(xi, .., xny) =symmetrization of 557, () (X2) - - - 075, q) (Xn)
for N — 1 maps T, ..., Ty transporting p to itself

1) Cotar, GF, Kliippelberg, 2011, 2013; Butazzo, Gori-Giorgi, DePascale 2012
2) Seidl 1999; Colombo, DiMarino, DePascale 2015

3) Pass 2014

4) Cotar, GF, Pass 2015
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Trying to understand multi-marginal optimal transport
without having assigned three particles to three sites

is like trying to understand quantum many-body theory
without having solved the 1D harmonic oscillator.

16



The 3-particles-3-sites-assignment problem

GF, arXiv 1808.04318
X ={a,.., as} finite state space (later: £ = 3), N = 3 particles/marginals
uniform one-particle density p(x) = % Zf:l 05 (x)

Kantorovich OT, min,cp_, (x3), ysp Jxs €(x,y,2) d¥(x,y, z), reduces to:

4
min E CijkYijk
ij k=1

over symmetric ¢ x¢x ¢ tensors (yjik) of order 3 which are tristochastic,
Vil =0, Y i =1forall k, > puj=1for all j, Y pyc =1 for all i.
iJ ik sk
T : X — X transports p to p iff T a permutation (T (a;) = a,(;)).
SCE/Monge ansatz:

v=57, 7=

|

‘
E 5371(V)®6372(V)®63T3(,,) for some permutations 7y, 7, 73
v=1

Means ~' extremely sparse: each of the 3¢ " planes” associated with the

sum constraints contain exactly one 1 and £2—1 zeros.
17



Kantorovich plans as molecular packings

Physics version of finite-state-space Kantorovich problem, GF, arXiv 1808.04318
Find the ground state of an ensemble of non-interacting molecules s.th.:
1) Each molecule is composed of 3 identical atoms.
2) All atoms must be confined to ¢ given sites ay, .., a, € R?
3) All sites must be occupied equally often (marginal condition)
4) The cost to be minimized is the intramolecular interaction energy
between the particles within a molecule.

State of a single molecule: J§,, ® 0y, ® 0y, x1 < X2 < X3
“<" from indistinguishability, “=" allowed as atoms can be on same site

State of ensemble: v =3" p,,6x§u) ® 6X§u) ® (5X3(,,), P, occup. probab’ies

o 8
o ®
8

o 0 0 6

(o]} (o]} Az Qg

Example: 7 = 18,, ® 62, ® 0oy + 102y ® 62 ® 0o + 182, ® 62y ® 0y + 5025 ® 623 @ 6



Simple counterexample to Monge ansatz
GF, arXiv 1808.04318

= {1,2,3} C R three equi-spaced sites on the real line
M|n|m|ze fx3( (Ix = y]) + v(ly — z|) + v(|Ix — 2])) dv(x,y, 2)
s/tovr—>51+52+§
v(r) = (r — a)? a= 2 (springs of bondlength 3/4)
Marginal condition + interaction ~ Frenkel-Kontorova model

By

Unique minimizer v = 5(%(51 ® 6 ® I+ %52 ® 03 ® d3)
not Monge, not symmetrized Monge

19



no. N of particles/marginals, no. ¢ of sites both minimal
N=2, any ¢: Monge ansatz ok for all costs, Birkhoff-Von Neumann-theorem
any N, ¢ = 2: follows from resuls of FMPCK, JCP 139,164109,2013

20



Continuous counterexample, formation of microstructure

partially inspired by DiMarino/Gerolin/Nenna fractal Monge map (2015)
Monge problem with no minimizer (GF, arXiv 2018): p(x) =1/3 on [0, 3],

3
minimize /0 @(vﬂx— T2(x)]) + v(| T2(x) — T5(x)]) + v(]x — T3(x)|)) dx

~
w

over T, T3 transporting p to p, v(r) = 7 — %.

3

/ Id
T2
T3
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Convex geometry of the set of Kantorovich plans

Kantorovich polytope For finite X = {ay, .., a¢}, any N, any given
one-body density p, set of Kantorovich plans {y € Psym(X") : v p/N}
is a convex polytope.

Typical costs (like Coulomb, springs from counterex., repulsive harmonic,
...) are 2-body, so cost depends only on 2-point marginal

Wij = Zk&“’kN Vijks...ky- Reduced Kantorovich polytope = 1's coming from
~'s in the Kantorovich polytope.

Fruitful to analyze/visualize these polytopes and their extreme points

GF, arXiv 2018, N=¢=3
Vogler, arXiv 2019, larger N and ¢, by computer
GF, Vogler, SIAM J.Math.Anal. 2018, sparse ansatz capturing all ext.pts



The reduced Kantorovich polytope for N=¢=3
GF, arXiv 2018

8 extreme points, 5 Monge (blue, purple, red), 3 non-Monge (yellow)
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The reduced Kantorovich polytope for N=/=3
GF, arXiv 2018

23 i i i
[ ]
F113
2/3 + ; : :
F112
XX
1/2
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The reduced Kantorovich polytope for N=¢=3
GF, arXiv 2018

no. of molecules does not divide N
-> vertex not Monge
-> get counterexample (F. 2018)

Frenkel-Kontoyjova cost:
favours double pccupancy,
penalizes triple pccupancy.

-> use this ertej .

2/3 :;:

repulsive cost:
penalizes double occupancy

1/2 .
| —> use this vertex
no. of molecules divides N
-> vertex is Monge
-> recover SCE ansatz (Seidl 1999)
|d\
attractive cost:
favours triple occupancy
—> use this vertex

0

0

0

no. of molecules divides N
-> vertex is Monge
-> recover Gangbo-Swiech result (1999)
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Breaking the curse of dimension
new ansatz replacing Monge: GF, Vogler, SIAM J.Math.Anal. 2018
finite state space X = {a1,...,a¢}, marginal o =, 11jd,;

Monge state € Pgym(XN):

V4
Y= SZNV(STl(aV) Q- 6TN(ay)
v=1

Each Ty,..., Ty : X — X pushes u forward to
(each map contributes one point to each site, (T;)su = p for all i)

“Quasi-Monge" state € Psym(XN): flexible site weights a,

¢
y=3S5 Z Oéu(sTl(al,) K- ® 5TN(al,)
v=1
Average push-forward of a =) @, d,, under the maps
Ti,...., Ty : X — X is equal to to u
(maps contribute unequally to different sites, Z,N:1(Ti)tia =p)



Breaking the curse of dimension

Monge state: "Quasi-Monge" state:
each map contributes flexible site weights
one point to each site maps contribute unequally to sites

27



Breaking the curse of dimension

Theorem (GF, Vogler, SIAM J.Math.Anal., 2018) For any number

N of marginals, any cost ¢ : XN — R, and any marginal u € P(X),

the Kantorovich problem “Minimize fo c dv subject to v — pu"
admits a minimizer of “Quasi-Monge” form.
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Breaking the curse of dimension

Theorem (GF, Vogler, SIAM J.Math.Anal., 2018) For any number

N of marginals, any cost ¢ : XN — R, and any marginal u € P(X),

the Kantorovich problem “Minimize fo c dv subject to v — pu"
admits a minimizer of “Quasi-Monge” form.

High-dimensional linear pb. — low-dimensional nonlinear pb
(MY — € (N + 1) DOF's.
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The counterexample is quasi-Monge

30



Quasi-Monge problem formulated in terms of maps
GF, Vogler, SIAM J.Math.Anal. 2018

1
VOSCEL 1 — i / - 4
S i Jo ) 2 - Tol ™

subject to -+ Z;V:l(Ti)tiOC = p, a probability measure on R3

after discretiz.: minimizer exists, exactly same as Kantorovich pb.,
numerically nice
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Summary

1) DFT in the strong correlation limit reduces to a highly nontrivial
optimal transport problem.

2) Still not known whether, for this problem, Kantorovich = Monge

3) But, after discretization, Kantorovich = Quasi-Monge, thereby
breaking the curse of dimension.

Thanks for your attention!

GF, arXiv 1808.04318
GF, Vogler, SIAM J.Math.Anal. 2018



