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Setup

I Consider a fermionic Fock space F with p states defined by creation
operators a†1, . . . , a

†
p.

I n̂i denote the corresponding number operators and N̂ =
∑

i n̂i the
total number operator.

I Free energy

Ω = −β−1 log Tr(e−βĤ).

I Gibbs variational principle

Ω = inf
P̂∈D

[
Tr(ĤP̂ ) + β−1S(P̂ )

]
.

Here D denotes density operators on the Fock space F and
S(P̂ ) := Tr[P̂ log P̂ ] is the von Neumann entropy.

I (Can imagine β =∞ case if you want, until otherwise noted.)



Setup

I Fix particle number N :

Ω = inf
P̂ : Tr[N̂P̂ ]=N

[
Tr(ĤP̂ ) + β−1S(P̂ )

]
.

I Consider Hamiltonian
Ĥ = Ĥ0 + Ĥ1,

where Ĥ0 is the single-body part.

I Assume that many-body part Ĥ1 takes the following Coulomb-like
form:

Ĥ1 = λ
∑
ij

Uijn̂in̂j .

WLOG Uij = Uji and Uii = 0.

I Motivated by the strictly correlated limit of λ→ +∞. (From now on,
omit λ from notation.)



“KS-SCE”

I For a density operator P̂ on the Fock space, can define density
ρ ∈ [0, 1]p via

ρi := Tr[n̂iP̂ ].

I Now rewrite free energy and bound:

Ω = inf
ρ :1>ρ=N

{
inf
P̂ 7→ρ

[
Tr(Ĥ0P̂ ) + Tr(Ĥ1P̂ ) + β−1S(P̂ )

]}

≥ inf
ρ :1>ρ=N

{
inf
P̂ 7→ρ

[
Tr(Ĥ0P̂ )

]
+ inf
P̂ 7→ρ

[
Tr(Ĥ1P̂ ) + β−1S(P̂ )

]}
=: inf

ρ :1>ρ=N
{F0[ρ] + FSCE[ρ]} .

I Looks like we just did the same thing as in first quantization, but
actually no. In particular, we will get a multi-marginal OT problem
where the number of marginals is number p of sites, not the number
N of electrons!



“KS-SCE”
I In summary, want so solve

ΩSCE := inf
ρ :1>ρ=N

{F0[ρ] + FSCE[ρ]} ,

where

F0[ρ] := inf
P̂ 7→ρ

[
Tr(Ĥ0P̂ )

]
, FSCE[ρ] := inf

P̂ 7→ρ

[
Tr(Ĥ1P̂ ) + β−1S(P̂ )

]
.

I F0 is ‘easy.’ Infimizer is a noninteracting state. Concave conjugate is
energy

F∗0 (u) = λmin

[(
Ĥ0 +

∑
i

uin̂i

)∣∣∣∣∣
FN

 .
I F∗0 concave. Generically strictly concave but not smooth, so gradient

injective but multi-valued at some points where eigenvalues cross (i.e.,
zero gap).

I This means gradient map of F0 (the inverse) is many-to-one, so it is
well-posed to compute. Don’t care that it’s not injective.



Solving the model

I Recall
ΩSCE = inf

ρ :1>ρ=N
{F0[ρ] + FSCE[ρ]} ,

I First idea: want to solve ∇FSCE[ρ] = −∇F0[ρ], i.e.,

ρ =
(

(∇F0)−1 ◦ (−∇FSCE)
)

[ρ].

I Fixed-point iteration.

I Finite temperature does fix the problem with ∇FSCE.

I If zero gap, there is a problem via (∇F0)−1.

I Could fix at least numerically by apportioning some entropy to the
non-interacting part of the infimum.

I But gradient descent actually ok regardless because sum of two
functional is differentiable, strongly convex (with parameter ∼ β−1).

I Remains to discuss the FSCE part and how to compute the gradient.



The SCE part

I Recall
FSCE[ρ] := inf

P̂ 7→ρ

[
Tr(Ĥ1P̂ ) + β−1S(P̂ )

]
.

I Nothing really ‘quantum’ about Ĥ1 on its own since the n̂i are all
diagonalized by the occupation number basis.

I Can derive

FSCE[ρ] = inf
π∈Π(ρ)

 ∑
s∈{0,1}p

c(s)π(s) + β−1S(π)

 .
Here Π(ρ) is probability measures π on {0, 1}p s.t. i-th marginal πi of
π is given by πi = (1− ρi)δ0 + ρiδ1. S is (convex) Shannon entropy.

I Cost is c(s) :=
∑p

i,j=1 Uijsisj .

I Nothing but an entropically regularized multi-marginal OT problem (on
binary hypercube). Gradient w.r.t. ρ is dual potential (modulo some
sign convention).



SDP relaxation and the entropy

I As discussed in Lin’s talk, can derive SDP relaxation of representable
set of two-marginals. More details in Lexing Ying’s talk later this week.

I But new difficulty: how to write S(π) in terms of two-marginals?

I You can’t, but consider Bethe approximation

SB({πij}i 6=j) :=
∑
i<j

S(πij)− (p− 2)
∑
i

S(πi).

I Since 1-marginals are fixed, just contributes a convex term to the SDP
from Lin’s talk.

I Finite temperature formalism makes it clear that the OT problem is
essentially doing some ‘variational inference’ for a classical spin system,
with spin-interaction matrix determined by Uij .

I Popular approach in graphical models literature: (loopy) belief
propagation (BP).

I Our method is equivalent to adding the semidefinite constraint to the
variational formulation of BP (cf. book by Mézard/Montanari).



Where is this going?

I SCE intriguing direction but extremely difficult to evaluate in practice.

I In first quantization, numerical approaches rely on space discretization;
no way obvious way to make use of a more efficient basis.

I Here we have an ansatz and algorithmic approach that are going to
yield at least something in a reasonable amount of time for models of
physical interest, e.g., long-range Hubbard model.

I Is second-quantized KS-SCE a good model? Strictly speaking,
probably not, but can it tell us useful things?

I Second quantization permits us to imagine hybrid approach with
traditional correlated methods.

I Splitting Ĥ0 + Ĥ1 doesn’t have to be between non-interacting and
interacting parts. Just need to have some trust in ability to ‘solve’ Ĥ0.
Then SCE part will yield effective potential contribution to Ĥ0

mimicking effect of the ‘rest of the Hamiltonian.’

I Or could imagine separating out a long-range part via Ĥ1 to make use
of forward model for Ĥ0 + û relying on short-range Hamiltonian.


