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Electronic structure theory

We consider the electronic structure, which is given by the many-body
electronic Schrödinger equation

(−1
2

𝑁

∑
𝑖=1

Δ𝑥𝑖 +
𝑁

∑
𝑖=1

𝑉ext(𝑥𝑖) + ∑
1≤𝑖<𝑗≤𝑁

1
|𝑥𝑖 − 𝑥𝑗|)Ψ(𝑥1, ⋯ , 𝑥𝑁 ) = 𝐸Ψ

under non-relativistic and Born-Oppenheimer approximations.
Here the atom types and positions enter 𝑉ext as parameters.

P.A.M. Dirac, 1929
The fundamental laws necessary to the mathematical treatment of large
parts of physics and the whole of chemistry are thus fully known, and the
difficult lies only in the fact that application of these laws leads to
equations that are too complex to be solved.
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under non-relativistic and Born-Oppenheimer approximations.
Here the atom types and positions enter 𝑉ext as parameters.

Still too complex to be solved, even after almost 90 years:
• Curse of dimensionality;
• Anti-symmetry of Ψ due to Pauli’s exclusion principle

Ψ(𝑥1, ⋯ , 𝑥𝑖, ⋯ , 𝑥𝑗 , ⋯ , 𝑥𝑁 ) = −Ψ(𝑥1, ⋯ , 𝑥𝑗 , ⋯ , 𝑥𝑖, ⋯ , 𝑥𝑁 );

• Ψ has complicated singularity structure.



Solving electronic Schrödinger equations:
• Tight-binding approximations (LCAO)
• Density functional theory

Orbital-free DFT
Kohn-Sham DFT

• Wavefunction methods
Hartree-Fock
Møller-Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configuration self-consistent field
Neural network ansatz

• GW approximation; Bethe-Salpeter equation
• Quantum Monte Carlo (VMC, DMC, etc.)
• Density matrix renormalization group (DMRG) / tensor networks
• ...



Solving electronic Schrödinger equations:
• Tight-binding approximations (LCAO)
• Density functional theory

Orbital-free DFT
Kohn-Sham DFT

10 of 18 most cited papers in physics [Perdew 2010]
More than 50, 000 citations on Google scholar

Figure: DFT papers count [Burke 2012].



Density functional theory [Hohenberg-Kohn 1964, Kohn-Sham 1965]: View
energy as a functional of the one-body electron density 𝜌 ∶ ℝ3 → ℝ≥0:

𝜌(𝑥) = 𝑁 ∫|Ψ|2(𝑥, 𝑥2, ⋯ , 𝑥𝑁 ) d𝑥2 ⋯ d𝑥𝑁 .

Levy-Lieb variational principle [Levy 1979, Lieb 1983]:

𝐸0 = inf
Ψ

⟨Ψ, 𝐻Ψ⟩ = inf
𝜌

inf
Ψ,Ψ↦𝜌

⟨Ψ, 𝐻Ψ⟩ = inf
𝜌

𝐸(𝜌).

The energy functional has the form

𝐸(𝜌) = 𝑇𝑠(𝜌) + ∫ 𝜌𝑉ext + 1
2 ∬

𝜌(𝑥)𝜌(𝑦)
|𝑥 − 𝑦| + 𝐸xc(𝜌)

𝑇𝑠(𝜌): Kinetic energy of non-interacting electrons;
𝐸xc(𝜌): Exchange-correlation energy, which encodes the many-body
interaction between electrons (chemistry).
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Kohn-Sham density functional theory
Kohn-Sham density functional theory introduces one-particle orbitals to
better approximate the kinetic and exchange-correlation energies.

It is today the most widely used electronic structure theory, which achieves
the best compromise between accuracy and cost.

The energy functional is minimized for 𝑁 orbitals {𝜓𝑖} ⊂ 𝐻1(ℝ3).

𝐸KS({𝜓𝑖}) =
𝑁

∑
𝑖=1

1
2 ∫|∇𝜓𝑖|2 + ∫ 𝜌𝑉ext + 1

2 ∬
𝜌(𝑥)𝜌(𝑦)
|𝑥 − 𝑦| + 𝐸xc(𝜌)

where (we consider “spin-less” electrons through the talk)

𝜌(𝑥) =
𝑁

∑
𝑖=1

|𝜓𝑖|2(𝑥).

Note that 𝐸KS can be still viewed as a functional of 𝜌, implicitly.



Kohn-Sham density functional theory
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The exchange-correlation functionals counts for the corrections from the
many-body interactions between electrons:

• Semi-local exchange-correlation functionals
Local density approximation: 𝐸xc = ∫ 𝑒xc(𝜌(𝑥))
Generalized gradient approximation:

𝐸xc = ∫ 𝑒xc(𝜌(𝑥), 1
2 |∇√𝜌(𝑥)|2)

• Nonlocal exchange-correlation functionals



Kohn-Sham density functional theory
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• Nonlocal exchange-correlation functionals
e.g., exact exchange + RPA correlation, 𝐸xc = 𝐸𝑥 + 𝐸𝑐:

𝐸𝑥 = −1
2
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tr[ln(1 − 𝜒0(𝑖𝜔)𝜈) + 𝜒0(𝑖𝜔)𝜈] d𝜔,

with 𝜈 the Coulomb operator and 𝜒0 Kohn-Sham polarizability
operator:

𝜒0(𝑥, 𝑦, 𝑖𝜔) = 2
occ

∑
𝑗

unocc

∑
𝑘

𝜓∗
𝑗 (𝑥)𝜓𝑘(𝑥)𝜓∗

𝑘 (𝑦)𝜓𝑗(𝑦)
𝜀𝑗 − 𝜀𝑘 − 𝑖𝜔 .



Kohn-Sham density functional theory has a similar structure as a mean
field type theory (at least for semilocal xc): The electrons interact through
an effective potential.
The electron density is given by an effective Hamiltonian:

𝐻eff(𝜌)𝜓𝑖 = 𝜀𝑖𝜓𝑖, 𝜌(𝑥) =
occ

∑
𝑖

|𝜓𝑖|2(𝑥);

where the first 𝑁 orbitals are occupied (aufbau principle). The effective
Hamiltonian captures the interactions of electrons:

𝐻eff(𝜌) = −1
2Δ + 𝑉eff(𝜌);

𝑉eff(𝜌) = 𝑉𝑐(𝜌) + 𝑉xc(𝜌).

Note that this is a nonlinear eigenvalue problem. We can view it as a
fixed-point equation for the density 𝜌:

𝜌 = 𝐹KS(𝜌).



Kohn-Sham map
Kohn-Sham fixed-point equation

𝜌 = 𝐹KS(𝜌),

where 𝐹KS is known as the Kohn-Sham map, defined through the
eigenvalue problem associated with 𝐻eff(𝜌).
Given an effective Hamiltonian 𝐻eff, we ask for its low-lying eigenspace:
the range of the spectral projection

𝑃 = 𝜒(−∞,𝜖𝐹 ](𝐻eff),

thus 𝜌 is given as the diagonal of the kernel of the operator 𝑃 .

It is often more advantageous to represent 𝑃 in terms of Green’s functions
(𝜆 − 𝐻eff)−1, so to turn the eigenvalue problem into solving equations.
Let 𝒞 be a contour around the occupied spectrum, we have

𝑃 = 𝜒(−∞,𝜖𝐹 ](𝐻eff) = 1
2𝜋𝚤 ∮𝒞

(𝜆 − 𝐻eff)−1 d𝜆.
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Numerical methods

Kohn-Sham fixed-point equation

𝜌 = 𝐹KS(𝜌).

Usually solved numerically based on self-consistent field (SCF) iteration
(alternative methods, such as direct minimization, are not as widely used)

→ see the talk of Ziad Musslimani



Numerical methods

Kohn-Sham fixed-point equation

𝜌 = 𝐹KS(𝜌).

Usually solved numerically based on self-consistent field (SCF) iteration
(alternative methods, such as direct minimization, are not as widely used)

• Self-consistent iteration
Linearize the nonlinear problem to a linear one at each step

• Discretization
Making the problem finite dimensional

• Evaluation of the Kohn-Sham map
Formation of effective Hamiltonian: 𝜌 ↦ 𝐻eff(𝜌)
Evaluation of density: 𝐻eff ↦ 𝜌
Most of the actual computational work.



Self-consistent iteration
Solving for the fixed point equation 𝜌 = 𝐹KS(𝜌).
(Note: often more convenient to view the iteration in terms of 𝑉eff)

• First idea: Fixed point iteration
𝜌𝑛+1 = 𝐹KS(𝜌𝑛)

Usually does not converge as 𝐹KS is not necessarily a contraction.

• Simple mixing
𝜌𝑛+1 = (1 − 𝛼)𝜌𝑛 + 𝛼𝐹KS(𝜌𝑛)

= 𝜌𝑛 − 𝛼(𝜌𝑛 − 𝐹KS(𝜌𝑛))
where 𝜌𝑛 − 𝐹KS(𝜌𝑛) is the residual.
𝛼 = 1 corresponds to fixed-point iteration.

• Preconditioning
𝜌𝑛+1 = 𝜌𝑛 − 𝒫 (𝜌𝑛 − 𝐹KS(𝜌𝑛))

e.g., 𝒫 = 𝛼𝐼 corresponds to simple mixing.
Kerker mixing for simple metals (jellium like)
→ see the talk of Antoine Levitt
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• Newton method

𝜌𝑛+1 = 𝜌𝑛 − 𝒥 −1
𝑛 (𝜌𝑛 − 𝐹KS(𝜌𝑛)

where 𝒥𝑛 is the Jacobian matrix.
Locally quadratic convergence, but each iteration is quite expensive
(involves iterative methods e.g., GMRES and finite difference
approximation to Jacobian matrix)

• Quasi-Newton type algorithms (the most widely used approach)
Broyden’s second method [Fang, Saad 2009; Marks, Luke 2008]
Low-rank update to ̂𝒥 −1

𝑛 (proxy for inverse Jacobian)
Anderson mixing [Anderson 1965] (a variant of Broyden)
Direct Inversion of Iterative Subspace (DIIS) [Pulay 1980]
Minimize a linear combination of residual to get linear combination
coefficients; other variants include E-DIIS [Cances, Le Bris 2000].
commutator-DIIS [Pulay 1983] (for nonlocal functionals)
Choice of residual as the commutator of 𝐻eff[𝑃 ] and 𝑃
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Discretization

• Large basis sets (𝒪(100) ∼ 𝒪(10, 000) basis functions per atom)
Planewave method (Fourier basis set / pseudospectral method)
[Payne et al 1992, Kresse and Furthmüller 1996]
Finite element method
[Tsuchida and Tsukada 1995, Suryanarayana et al 2010, Bao et al 2012]
Wavelet method [Genovese et al 2008]
Finite different method [Chelikowski et al 1994]

• Small basis sets (𝒪(10) ∼ 𝒪(100) basis functions per atom)
Gaussian-type orbitals (GTO) (see review [Jensen 2013])
Numerical atomic-orbitals (NAO) [Blum et al 2009]

• Adaptive / hybrid basis sets (𝒪(10) ∼ 𝒪(100) basis fctns per atom)
Augmented planewave method [Slater 1937, Andersen 1975]
Nonorthogonal generalized Wannier function [Skylaris et al 2005]
Adaptive local basis set [Lin et al 2012]
Adaptive minimal basis in BigDFT [Mohr et al 2014]



Fourier basis set
Computational domain Ω = [0, 𝐿1] × [0, 𝐿2] × [0, 𝐿3] with periodic
boundary condition (i.e., Γ-point for simplicity).
Reciprocal lattice in the frequency space

𝕃∗ = {𝑔 = (
2𝜋
𝐿1

𝑖1, 2𝜋
𝐿2

𝑖2, 2𝜋
𝐿3

𝑖3), 𝑖 ∈ ℤ3
}

Basis functions
𝜙𝑔(𝑟) = 1

|Ω|1/2 exp(𝚤𝑔 ⋅ 𝑟)

with 𝑔 ∈ 𝔾cut = {𝑔 ∈ 𝕃∗ ∶ 1
2 |𝑔|2 ≤ 𝐸cut}.



Real space representation

Fourier basis set (without energy cutoff) can be equivalently viewed in the
real space using psinc function as basis set [Skylaris et al 2005]

𝜑𝑟′(𝑟) = 1
√𝑁𝑔|Ω| ∑

𝑔∈𝐺
exp(𝚤𝑔 ⋅ (𝑟 − 𝑟′)).

This is a numerical 𝛿-function on the discrete set 𝕏, satisfying

𝜑𝑟′(𝑟) = √
𝑁𝑔
|Ω|𝛿𝑟,𝑟′ , 𝑟, 𝑟′ ∈ 𝕏.

Thus a function in the finite dimensional approximation space can be
represented by its values on the grid 𝕏.
We can keep in mind discretization based on real space representation for
the discussion of algorithms below (pseudopotential assumed).



Numerical atomic-orbitals

Basis functions are given by

{𝜑𝑖𝑙𝑚(𝑟 − 𝑅𝐼 ) = 𝑢𝑖(|𝑟 − 𝑅𝐼 |)
|𝑟 − 𝑅𝐼 | 𝑌𝑙𝑚(

𝑟 − 𝑅𝐼
|𝑟 − 𝑅𝐼 |) | 𝑖 = 1, ⋯ , 𝑛𝐼 , 𝐼 = 1, … , 𝑀},

where 𝑌𝑙𝑚 are spherical harmonics and the radial part is obtained by
solving (numerically) Schrödinger-like radial equation

(−1
2

d2

d𝑟2 + 𝑙(𝑙 + 1)
𝑟2 + 𝑣𝑖(𝑟) + 𝑣cut(𝑟))𝑢𝑖(𝑟) = 𝜖𝑖𝑢𝑖(𝑟)

• 𝑣𝑖(𝑟): a radial potential chosen to control the main behavior of 𝑢𝑖;
• 𝑣cut(𝑟): a confining potential to ensure the rapid decay of 𝑢𝑖 beyond a

certain radius and can be treated as compactly supported.
NAO is used in FHI-aims [Blum et al 2009], which is one of the most
accurate all-electron DFT package.



Adaptive / hybrid basis set

Recall ...
• Large basis set

pro: accuracy is systematically improvable;
con: higher number of DOF per atom;

• Small basis set
pro: much smaller number of DOF per atom;
con: more difficult to improve its quality in a systematic fashion (reply
heavily on tuning and experience).

Adaptive basis aims at combining the best of two worlds. Examples:
• Augmented planewave method [Slater 1937, Andersen 1975]
• Nonorthogonal generalized Wannier function [Skylaris et al 2005]
• Adaptive local basis set [Lin et al 2012]
• Adaptive minimal basis in BigDFT [Mohr et al 2014]



Adaptive local basis set [Lin, Lu, Ying, E, 2012]

Key idea: Use local basis sets numerically obtained on local patches of the
domain so that it captures the local information of the Hamiltonian.

• Based on the discontinuous Galerkin framework for flexibility of basis
set choices (alternatives, such as partition of unit FEM, can be also
used);

• Partition the computational domain into non-overlapping patches
{𝜅1, 𝜅2, … , 𝜅𝑚};

• For each patch 𝜅, solve on an extended element 𝜅 eigenvalue problem
locally and take the first few eigenfunctions

(−1
2Δ + 𝑉 𝜅

eff + 𝑉 𝜅
nl )𝜙𝜅,𝑗 = 𝜆𝑘,𝑗𝜙𝜅,𝑗

• Restrict 𝜙𝜅,𝑗 to 𝜅 and use SVD to obtain an orthogonal set of local
basis functions.

Remark: Similar in spirit to GFEM, GMsFEM, reduced basis functions, etc.



Figure: The isosurfaces (0.04 Hartree/Bohr3) of the first three ALB functions
belonging to the tenth element 𝐸10: (a) 𝜙1, (b) 𝜙2, (c) 𝜙3, and (d) the electron
density 𝜌 across in top and side views in the global domain in the example of
P140. There are 64 elements and 80 ALB functions in each element, which
corresponds to 37 basis functions per atom [Hu et al, 2015].



DGDFT package

Figure: Convergence of DGDFT total energy and forces for quasi-1D and 3D Si
systems to reference planewave results with increasing number of ALB functions
per atom. (a) Total energy error per atom Δ𝐸 (Ha/atom). (b) Maximum atomic
force error Δ𝐹 (Ha/Bohr). The dashed green line corresponds to chemical
accuracy. Energy cutoff 𝐸cut = 60 Ha and penalty parameter 𝛼 = 40. When the
number of basis functions per atom is sufficiently large, the error is well below the
target accuracy (green dashed line) [Zhang et al 2017].



Evaluation of the Kohn-Sham map
Problem: Given 𝐻 , solve for the electron density 𝜌.

• Eigensolver
Direct diagonalization: ScaLAPACK, ELPA
Iterative methods:

★ Traditional iterative diagonalization [Davidson 1975, Liu 1978]
★ Modern Krylov subspace method (with reduced orthogonalization)

[Knyazev 2001, Vecharynski et al 2015]
★ Chebyshev filtering method [Zhou et al 2006]
★ Orbital minimization method [Mauri et al 1993, Ordejón et al 1993]

• Linear scaling methods
Divide-and-conquer [Yang 1991]
Density matrix minimization [Li, Nunes, Vanderbilt 1993; Lai et al
2015]
Density matrix purification [McWeeny 1960]

• Pole expansion and selected inversion (PEXSI) method [Lin et al
2009]

Common library approach for Kohn-Sham map:
ELSI (ELectronic Structure Infrastructure) [Yu et al 2018]

https://wordpress.elsi-interchange.org/

https://wordpress.elsi-interchange.org/


Chebyshev filtering [Zhou et al 2006]

Key observation: For Kohn-Sham DFT, we do not need individual
eigenvalues and eigenvectors of 𝐻 , but only a representation for the
occupied space.

Accelerated subspace iteration

𝑋𝑛+1 = 𝑃𝑘(𝐻)(𝑋𝑛).

𝑃𝑘 is a 𝑘-th degree Chebyshev polynomial to filter out the higher spectrum.

• Orthogonalization of 𝑋𝑛+1 is needed to avoid collapsing
(Rayleigh-Ritz rotation is used);

• Might be bypassed using 2-level Chebyshev filtering (inner Chebyshev
for spectrum near Fermi level) [Banerjee et al 2018]

• For insulating systems, can be replace by localization procedure to
achieve linear scaling [E, Li, Lu 2010]



Algorithm 1: Chebyshev filtering method for solving the Kohn-Sham
DFT eigenvalue problems 𝐻𝜓𝑖 = 𝜀𝑖𝜓𝑖.
Input: Hamiltonian matrix 𝐻 and an orthonormal matrix 𝑋 ∈ ℂ𝑁𝑏×𝑁𝑠

Output: Eigenvalues {𝜀𝑖}𝑁
𝑖=1 and wave functions {𝜓𝑖}𝑁

𝑖=1
1: Estimate 𝜀𝑁+1 and 𝜀𝑁𝑏 using a few steps of the Lanczos algorithm.
2: while convergence not reached do
3: Apply the Chebyshev polynomial 𝑃𝑘(𝐻) to 𝑋: 𝑌 = 𝑃𝑘(𝐻)𝑋.
4: Orthonormalize columns of 𝑌 .
5: Compute the projected Hamiltonian matrix �̃� = 𝑌 ∗𝐻𝑌 and solve

the eigenproblem �̃�Ψ̃ = Ψ̃�̃�.
6: Subspace rotation 𝑋 = 𝑌 Ψ̃.
7: end while
8: Update {𝜓𝑖}𝑁

𝑖=1 from the first 𝑁 columns of 𝑋.



Linear scaling methods

The conventional diagonalization algorithm scales as 𝒪(𝑁3), known as the
“cubic scaling wall”, which limits the applicability of Kohn-Sham DFT.
For insulating systems (or metallic system at high temperature),
𝒪(𝑁)-scaling algorithms are available, based on the locality of the
electronic structure problem:

• Exponential decay of the density matrix;
• Exponentially localized basis of the occupied space (i.e., localized

molecular orbitals, Wannier functions)

Side: Localization methods for Wannier functions
• Optimization based approaches [Foster, Boys 1960; Marzari,

Vanderbilt 1998; E, Li, Lu 2010; Mustafa et al 2015];
• Gauge smoothing approach [Cances et al 2017];
• SCDM (selected column of density matrix) [Damle et al 2015]
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Density matrix purification
McWeeny’s purification

𝑃𝑛+1 = 𝑓McW(𝑃𝑛) = 3𝑃 2
𝑛 − 2𝑃 3

𝑛

with initial iterate (𝛼 = min{(𝜀max − 𝜇)−1, (𝜇 − 𝜀min)−1})

𝑃0 = 𝛼
2 (𝜇 − 𝐻) + 1

2𝐼.

Fixed point of 𝑓McW = 0, 1
2 , 1:



Density matrix purification

Linear scaling can be achieved by truncating the density matrix at each
iteration; see e.g., NTPoly [Dawson, Nakajima 2018]
The initialization requires estimate of the extreme eigenvalues of 𝐻 and
also the chemical potential.

𝑃0 = 𝛼
2 (𝜇 − 𝐻) + 1

2𝐼.

where 𝛼 = min{(𝜀max − 𝜇)−1, (𝜇 − 𝜀min)−1}.
Several ways have been proposed for auto-tuning the chemical potential
(reviewed in [Niklasson 2011]):

• Canonical purification [Paler, Manolopoulos 1998]
• Trace correcting purification [Niklasson 2002]
• Trace resetting purification [Niklasson et al 2003]
• Generalized canonical purification [Truflandier et al 2016]



PEXSI (Pole EXpansion and Selected Inversion)

PEXSI [Lin et al 2009, Lin et al 2011, Jacquelin et al 2016]
• Reduced scaling algorithm based on Fermi operator expansion and

sparse direct linear algebra
𝒪(𝑁) for quasi-1D system;
𝒪(𝑁3/2) for quasi-2D system;
𝒪(𝑁2) for bulk 3D system.

• Applicable to general systems (insulating or metallic) with high
accuracy;

• Integrated into packages include BigDFT, CP2K, DFTB+, DGDFT,
FHI-aims, SIESTA;

• Part of the Electronic Structure Infrastructure (ELSI);
• Available at http://www.pexsi.org/ under the BSD-3 license.

http://www.pexsi.org/


Pole expansion
Contour integral representation for density matrix (at finite temperature);
chemical potential can be estimated on-the-fly during SCF [Jia, Lin 2017]

𝑓𝛽(𝐻 − 𝜇) = 1
2𝜋𝚤 ∮𝒞

𝑓𝛽(𝑧)((𝑧 + 𝜇)𝐼 − 𝐻)
−1 d𝑧

Discretization with 𝒪(log(𝛽Δ𝐸)) terms [Lin et al 2009; Moussa 2016]

𝑃 ≈
𝑚

∑
𝑙=1

𝜔𝑙(𝐻 − 𝑧𝑙)−1.



Selected inversion
Key observation: We don’t need every entry of (𝐻 − 𝑧𝑙)−1; only those near
the diagonal.
Assume 𝐴 partitioned into a 2 × 2 block form

𝐴 = (
𝛼 𝑏⊤

𝑏 𝐴 )

Pivoting by 𝛼 (with 𝑆 = 𝐴 − 𝑏𝛼−1𝑏⊤ known as the Schur complement)

𝐴 = (
1
ℓ 𝐼) (

𝛼
𝐴 − 𝑏𝛼−1𝑏⊤) (

1 ℓ⊤

𝐼 )

𝐴−1 can be expressed by

𝐴−1 = (
𝛼−1 + ℓ⊤𝑆−1ℓ −ℓ⊤𝑆−1

−𝑆−1ℓ 𝑆−1 )

Thus the calculation can be organized in a recursive fashion based on the
hierarchical Schur complement.



Algorithm 2: Selected inversion based on 𝐿𝐷𝐿⊤ factorization.

Input: 𝐿𝐷𝐿⊤ factorization of a symmetric matrix 𝐴 ∈ ℂ𝑁𝑏×𝑁𝑏 .
Output: Selected elements of 𝐴−1, i.e., {𝐴−1

𝑖,𝑗 ∣ (𝐿 + 𝐿⊤)𝑖,𝑗 ≠ 0}.
1: Calculate 𝐴−1

𝑁𝑏,𝑁𝑏
← (𝐷𝑁𝑏,𝑁𝑏)−1.

2: for 𝑘 = 𝑁𝑏 − 1, ..., 1 do
3: Find the collection of indices 𝐶 = {𝑖 | 𝑖 > 𝑘, 𝐿𝑖,𝑘 ≠ 0}.
4: Calculate 𝐴−1

𝐶,𝑘 ← −𝐴−1
𝐶,𝐶𝐿𝐶,𝑘.

5: Calculate 𝐴−1
𝑘,𝐶 ← (𝐴−1

𝐶,𝑘)⊤.
6: Calculate 𝐴−1

𝑘,𝑘 ← (𝐷𝑘,𝑘)−1 − 𝐴−1
𝑘,𝐶𝐿𝐶,𝑘.

7: end for

In practice, as in LDLT packages, columns of 𝐴 are partitioned into
supernodes (set of contiguous columns) to enable level-3 BLAS for
efficiency [Jacquelin et al 2016].



Performance and scalability of PEXSI
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Figure: Wall clock time versus the number of cores for a graphene systems with
2048, 8192, and 32768 atoms [Jacquelin et al 2016]

241 second wall clock time for graphene with 32, 768 atoms (DG ALB
discretization); infeasible for traditional solvers.



What is happening now and perhaps in the near future?
• Massively scalable software development

e.g., the ELSI project [Yu et al 2018]; the ESL project;
many actively maintained packages available

• Efficient algorithms for nonlocal functionals (and beyond)
Some recent developments of algorithmic tools
(low-rankness seems to be useful):

Interpolative separable density fitting (ISDF) for pair products of
orbital functions [Lu, Ying 2015];
Projective eigendecomposition of the dielectric screening (PDEP) for
GW calculations [Govoni, Galli 2015]
Adaptive compressed exchange operator (ACE) method [Lin 2016].
...

• Excited states; time-dependent DFT; highly correlated systems;
• Numerical analysis; robust and black-box algorithms for

high-throughput calculations;
• Machine learning techniques for electronic structure;
• Quantum computing for quantum chemistry
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Thank you for your attention

Email: jianfeng@math.duke.edu

url: http://www.math.duke.edu/~jianfeng/

Reference:
• Lin Lin, L., and Lexing Ying, Numerical Methods for Kohn-Sham

Density Functional Theory, Acta Numerica, 2019

http://www.math.duke.edu/~jianfeng/

