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Goal of Talk

Modest:
» Solve Kohn-Sham equations using
spectral renormalization method;

» Use time-dependent spectral renormalization to
simulate time-dependent DFT.

Ambitious:
Use the machinery developed above to study

» Many-body (strongly interacting) Anderson localization;
» PT symmetric DFT or DFT with complex potentials.

» Topological physics in the presence of strong interaction.



Spectral renormalization method
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Spectral renormalization method for computing
self-localized solutions to nonlinear systems
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Computing eigenfunctions and eigenvalues of boundary-value problems with the orthogonal
spectral renormalization method

Holger Cartarius,! Ziad H. Musslimani,"-> Lukas Schwarz,'! and Giinter Wunner'
Unstitut fiir Theoretische Physik 1, Universitit Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
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A toy model: Gross-Pitaevskii equation

Models Bose-Einstein condensation at zero temperature

iwt > _wx:c + $2¢ 1 W\Z%D
Y(z,t) = dp(z)e™*

[ 192ds =N

Goal: compute the eigenfunctions ¢ and eigen energy E



Renormalize the orbital
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Iteration scheme

Give ¢ equals random numbers
Compute R,

Compute F;
Update 69 - 0o + 20+ R0 0= ap + Hp
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Time dependent spectral renormalization

Physica D 358 (2017) 15-24

Contents lists available at ScienceDirect g
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Physica D
journal homepage: www.elsevier.com/locate/physd
Time-dependent spectral renormalization method @Cmsm

Justin T. Cole, Ziad H. Musslimani *
Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, United States

» Bridge between theory and numerics

» The same method is used to solve linear/nonlinear eigenvalues problems
as well as time dependent problems,

» Used to detect singularities for ODEs and PDEs,

» Allows inclusion of physics on demand in the form of conservation laws.
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Fig. 5. The error evolution in the solution E(t), power P(t), momentum M(t), and Hamiltonian H(t). The value of R(t) is found using conservation of power (row 1 of
Table 1), momentum (row 2 of Table 1), and Hamiltonian (row 3 of Table 1 with negative sign) in panels (a), (b), and (c), respectively. The computational parameters are;

¢=2T=7M=1000,L =100,N = 1024.
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Detecting singularities for ODEs

t
Duhamel’s formulation :E(t) — X0 —I—/ z° (T)dT
0]

x(t) = Ry(t) y(t) = % [330 + R’ /Ot y2(7-):| dr

/O ) o(t)yn(t)dt = é—i /O T p(t)dt + Ry, /O ; di(t) { /O | yi(f)dT]

1 t
Yn+1(t) = IR {IO T Ri/ yi(T)} dr
n 0






Anderson localization of strongly interacting systems?

Anderson localization of non interacting systems

Consider the linear Schrodinger equation governing the
motion of an electron in a periodic crystal

i) ==+ V(X W:R*xR = C
UJ(X,O) =1,UO(X) — 0 < X <+
V(x)=V(x+a) V:R—=R (smooth)

Y(t,x)=¢(x,E)exp(-iEt) EeEeR

—02p+V(x)¢p = E¢

Boundary conditions: ¢ is bounded as X —> £



Floquet-Bloch theory and band-gap structure

The spectrum of —&f + V(x) actingon I*(R)

1s real, bounded from below, tends to positive infinity,
1s absolutely continuous, and consists of the union of closed intervals
called spectral bands separated by spectral gaps.

—&f +V(x)¢p=E
¢ ¢ 9 @,(x,k) is complex and bounded function of x

i ik(E )x
9, (x.k) =@, (x.k(E))e +If  k(E)is real then ¢, (x,k(E))
@,(x +a,k) =g, (x,k) is a bounded function of x

( d )2 k(E) 1isin a spectral band
—|—+ik| +V(x)

@, (x,k)=FE (k)p, (x,k)
dx

*If k(E) isimaginary, then
¢,(x,k(E)) s unbounded in x
E(k)sE,(k)<..<E (k)=.. k(E)

is in a spectral gap

extended state A wave propagates freely through the medium
W Ballistic Transport/Diffraction
® 5 e O ® © o o o

<+—>



Transport in random lattices

Classical behavior Quantum behavior
Random impurities in the crystalline structure —o+TV(D+V (x _FE
scatter the electron and give rise to a random I o (DI ¢
walk motion of the electron as if they were V(x)=V(x+a)
classical billiard balls. This is the mechanism
behind diffusion and Ohm’ s law. {V_},cq 18 acollection of random potentials chosen

from the set € with probability measure P(®)

The wave 1s coherently scattered by defects,
Constructive interference of multiple scatterings

The transmission probability of a propagating wave through a disordered medium decays
when the strength of the disorder potential reaches a critical value and leads to Anderson localization.

g , -localization length




n localization in disordered atom
1s difficult to observed

Reasons: Anderson localization requ

» adisordered potential which is time indepe

» No many body interactions
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Transport and Anderson localization in disordered
two-dimensional photonic lattices

Tal Schwartz', Guy Bartal’, Shmuel Fishman' & Mordechai Segev'
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Figure 1| Transverse localization scheme. a, A probe beam entering a k2 1oL _
disordered lattice, which is periodic in the two transverse dimensions (x anc
y) but invariant in the propagation direction (z). In the experiment describec 10k T T
here, we use a triangular (hexagonal) photonic lattice with a periodicity of &
11.2 um and a refractive-index contrast of ~5.3 X 10~ *. The lattice is inducec g 8- o L
optically, by transforming the interference pattern among three plane wave: 4 *
= 6
v 9 T X ~U 7 -2 'l g
2 4 1 o
» P= “ I(x,y,L) " dxdy Ul(x,y,L)dxdy , 'l .
» “ - O 2 L 1 L 1 L
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units of P=inverse area Relative disorder level (%)
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PRL 100, 013906 (2008) PHYSICAL REVIEW LETTERS 11 JANUARY 2008

Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices

~
)

Yoav Lahini,"* Assaf Avidan.' Francesca Pozzi.” Marc Sorel.” Roberto Morandotti.
Demetrios N. Christodoulides,” and Yaron Silberberg'
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PRL 100, 013906 (2008) PHYSICAL REVIEW LETTERS

week ending
11 JANUARY 2008

Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices

Yoav Lahini,"* Assaf Avidan,I Francesca Pozzi,2 Marc Sorel,2 Roberto Morandotti,3

Demetrios N. Christodoulides,” and Yaron Silberberg'
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Direct observation of Anderson localization of matter

waves in a controlled disorder

Juliette Billy', Vincent Josse', Zhanchun Zuo', Alain Bernard', Ben Hambrecht’, Pierre Lugan', David Clément’,

Laurent Sanchez-Palencia’, Philippe Bouyer' & Alain Aspect’
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Numerical study of one-dimensional and
interacting Bose—Einstein condensates in

a random potential

Eric Akkermans!, Sankalpa Ghosh!-

< and Ziad H Musslimani-

3

! Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel
2 Physics Department, Indian Institute of Technology Delhi. New Delhi 110016, India
3 Department of Mathematics, Florida State University, Tallahassee, FLL 32306-451, USA
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Anderson localization for NLS equation
Mathematical formulation:
WUt = — Uz + Vi (2)u + g\u\zu, g >0
V() is a random potential

Assume that the initial condition u(x,0) is well localized

Prove (or dis prove) the following statement:
For any 0 < € < 1 with probability 1 — € on the space of the potentials

supy ¢[e!®u(z, )| < C(€) < oo for some a > 0

Random and dynamic optimal transport approach?



PT symmetric DFT?

Motivation: quantum

mechanics

Physical observables  <uump- Self-adjoiqt (ngmitian) linear
operators in Hilbert space

Hamiltonian H: =) Real energy levels, unitary evolution

idu/dt = Hu } u(t) = e u,
u(0) = u, o2

20 ”uO L?

What about non Hermitian ~“Hamiltonians”,
do they describe physical reality?



VOLUME 80, NUMBER 24 PHYSICAL REVIEW LETTERS 15 JUNE 1998

Real Spectra in Non-Hermitian Hamiltonians Having P77 Symmetry

Carl M. Bender! and Stefan Boettcher>
' Department of Physics, Washington University, St. Louis, Missouri 63130
2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
3CTSPS, Clark Atlanta University, Atlanta, Georgia 30314
(Received 1 December 1997; revised manuscript received 9 April 1998)

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded
below. However, if one replaces this condition by the weaker condition of P7 symmetry, one obtains
new infinite classes of Hamiltonians whose spectra are also real and positive. The classical and
quantum properties of some of these Hamiltonians are discussed in this paper.

~¢"(z) — (iz)" ¢ (z) = EY().




FIG. 1. Energy levels of the Hamiltonian H = p° — (ix)¥ as
a function of the parameter /IN. There are three regions: When
N = 2 the spectrum is real and positive. The lower bound
of this region, /N — 2, corresponds to the harmonic oscillator,
whose energy levels are F£,, — 2n + 1. When 1 < N < 2,
there are a finite number of real positive eigenvalues and an
infinite number of complex conjugate pairs of eigenvalues. As
IN decreases from 2 to 1, the number of real eigenvalues de-
creases; when IN < 1.42207, the only real eigenvalue is the
ground-state energy. As IN approaches 117, the ground-state
energy diverges. For /N < 1 there are no real eigenvalues.




Introduction to PT symmetry

Parity operator: Pf(x) - f(_x)
Time reversal operator: Tf(x) = f* (x)

PT operator: PTf(aj) — f*(—aj)

Definition of PT symmetric operators: Let A be a linear operator. We say ti

A is PT symmetric if
PT, Al =0

- V(x) V¥ (—zx) = V(z)

da?




Definition of unbroken PT symmetry
Let A be a linear operator. We say that A has unbroken PT symmetry
if A and PT share the same eigenfunctions.

Theorem: If a PT symmetric linear operator A has an
unbroken PT symmetry, then its spectrum is real.

Proof: PTlTu = ou Au = \u
PT(Au) = PT(Au) = A*PTu = X" au
PT(Au) = APTu = Aau = alu
AT =)



Aef ST () ol x It gives positive definite norm and
(f-8)crr = f o (0s) Unitary evolution

CPT C,H]=0
£ (x) = f dyC(x,y) f(-) —
[C,PT]=0
Can PT symmetric Hamiltonians (with exact PT symmetry) be considered as
Extension of quantum mechanics?. y
VOLUME 89, NUMBER 27 PHYSICAL REVIEW LETTERS 30 DECEMBER 2002

Complex Extension of Quantum Mechanics

Carl M. Bender,' Dorje C. Brody,” and Hugh F. Jones”

'Department of Physics, Washington University, St. Louis, Missouri 63130
*Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 12 August 2002; published 16 December 2002)

Requiring that a Hamiltonian be Hermitian is overly restrictive. A consistent physical theory of
quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less
restrictive and more physical condition of space-time reflection symmetry (P77 symmetry). One might
expect a non-Hermitian Hamiltonian to lead to a violation of unitarity. However, if P7 symmetry is
not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the
Hamiltonian. Using C, an inner product whose associated norm is positive definite can be constructed.
The procedure is general and works for any P7T -symmetric Hamiltonian. Observables exhibit CPT
symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with
conventional quantum mechanics but is rather a complex generalization of it.

DOI: 10.1103/PhysRevLett89.270401 PACS numbers: 11.30.Er, 03.65.-w, 03.65.Ge, 02.60.L;j




PT symmetry in Optics

Normalized 2
Paraxial Wave I oW + oY + V(x)lIJ =()

Equation of Diffraction| 9z  9x’

(Re {V (x )}oc n,(x) Index profile
Im {V (x )}oc n,(x) Gain-loss profile

. X Symmetric mode

Hp (x) /

oy (x)

Transparent P7 waveguide
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Beam Dynamics in 27 Symmetric Optical Lattices

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides
College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA

Z..H. Musslimani

Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
(Received 5 June 2007; revised manuscript received 9 October 2007; published 13 March 2008)
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Optical Solitons in P77 Periodic Potentials

Z. H. Musslimani
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides

College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
(Received 1 September 2007:; revised manuscript received 24 October 2007; published 23 January 2008)

We investigate the effect of nonlinearity on beam dynamics in parity-time (P7T ) symmetric potentials.
We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical
PT synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters.
The transverse power flow within these complex solitons is also examined.

DOI: 10.1103/PhysRevLett.100.030402 PACS numbers: 03.65.Ge, 11.30.Er, 42.65.5f, 42.65.Tg

oY 7Y
V(x) = cos’(x),  W(x) = W,sin(2x). l TR

(V) + W] + |ylPg =0,
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PRL 103, 093902 (2009) PHYSICAL REVIEW LETTERS 28 AUGUST 2009

Observation of P7 -Symmetry Breaking in Complex Optical Potentials

A. Guo and G. J. Salamo Obsewa“pn Of
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA T’Z'_/bre a kl ng
D. Duchesne and R. Morandotti in a paSSive COUpler

INRS-EMT, Varennes, Québec J3X 152, Canada

M. Volatier-Ravat and V. Aimez

Centre de Recherche en Nanofabrication et en Nanocaractérisation, Université de Sherbrooke, Sherbrooke, Québec JIK 2R 1, Canada

G. A. Siviloglou and D. N. Christodoulides

College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
(Received 29 April 2009; published 27 August 2009)

nature_ Observation of
phyS1CS PUBLISHED ONLINE: 24 JANUARY 2010 | DOI!:OEO;EIPEYES?S H
PT-breaking

in an active coupler
Observation of parity-time symmetry in optics

Christian E. Riiter!, Konstantinos G. Makris?, Ramy El-Ganainy?, Demetrios N. Christodoulides?,
Mordecha| Segev? and Detlef Kip'™*
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Non-Hermitian physics and PT symmetry

Ramy El-Ganainy', Konstantinos G. Makris?, Mercedeh Khajavikhan?, Ziad H. Musslimani?,
Stefan Rotter® and Demetrios N. Christodoulides®*

In recent years, notions drawn from non-Hermitian physics and parity-time (PT) symmetry have attracted considerable
attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected
features has initiated an intense research effort to explore non-Hermitian systems both theoretically and experimentally.
Here we review recent progress in this emerging field, and provide an outlook to future directions and developments.
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Constant-intensity waves and their modulation
instability in non-Hermitian potentials

K.G. Makris"2, Z.H. Musslimani3, D.N. Christodoulides® & S. Rotter'
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Density functional theory of complex transition densities

Matthias Ernzerhof®
Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7,

Canada
THE JOURNAL OF
PHYSICAL CHEMISTRY

L e t t e r S pubs.acs.org/JPCL

Calculating the Lifetimes of Metastable States with Complex Density
Functional Theory

Yongxi Zhou and Matthias Ernzerhof*
THE JOURNAL OF CHEMICAL PHYSICS 136, 094105 (2012)

Open-system Kohn-Sham density functional theory

Yongxi Zhou and Matthias Ernzerhof?
Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
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Photonic Floquet topological insulators

Mikael C. Rechtsman'*, Julia M. Zeuner”*, Yonatan Plotnik'*, Yaakov Lumer', Daniel Podolsky', Felix Dreisow”, Stefan Nolte?,
Mordechai Segev' & Alexander Szameit”

doi:10.1038/naturel2066

Topological insulators are a new phase of matter', with the striking
property that conduction of electrons occurs only on their surfaces' .
In two dimensions, electrons on the surface of a topological insulator
are not scattered despite defects and disorder, providing robustness -
akin to that of superconductors. Topological insulators are predicted
to have wide-ranging applications in fault-tolerant quantum com-
puting and spintronics. Substantial effort has been directed towards
realizing topological insulators for electromagnetic waves*'>. One-

Topological insulator laser:
Experiments

Miguel A. Bandres,” Steffen Wittek,” Gal Harari,” Midya Parto, Jinhan Ren,
Mordechai Segev,i Demetrios N. Christodoulides, Mercedeh Khajavikhant



Topological DFT?

nature.com

Topological insulators mom Y RS Feed
Topological insulators are materials that are insulating in their interior but can support the flow of electrons on their
surface. The underlying cause is time-reversal symmetry: their physics is independent of whether time is flowing backward

or forward. These surface states are robust, maintained even in the presence of surface defects.
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The strange topology that is reshaping physics

Topological effects might be hiding inside perfectly ordinary materials, waiting to reveal
bizarre new particles or bolster quantum computing.
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