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Universality near equilibrium

Consider the expectation value of the energy momentum tensor in 
some microscopic theory. Close to equilibrium we will find

What do we expect?

• Option 1: for gradients of fixed magnitude, adding more terms will give 
an increasingly more accurate answer 

• Option 2: for a fixed number of terms, the answer will become more 
accurate as the magnitude of the gradients diminishes

The second possibility means that the series is asymptotic but not 
necessarily convergent. 

At late times: universal asymptotic behaviour across many theories. 

⟨ ̂Tμν⟩ = ℰuμuν + 𝒫(ℰ)(gμν + uμuν) + ησμν + …



Some quantities such as dispersion relations in the linearised theory are 
represented by series with a finite radius of convergence [Withers 
1803.18058; Grozdanov, Kovtun, Starinets, Tadic1904.01018, 1904.12862].

Divergent examples: late proper-time expansion of Bjorken flow in 

• N=4 SYM via AdS/CFT

• Kinetic Theory (RTA)

The divergence of the gradient expansion:

• expresses the fact that subdominant contributions had been dropped

• explains why hydrodynamics works so well:  “divergent series converge 
faster than convergent series” (G. Carrier)

• is connected with non-hydrodynamic modes in the microscopic theory 
(fast processes) so it should be seen as generic. 



Relativistic Hydrodynamics

Conservation equation:

 
 
Constitutive relations as a gradient expansion 

The goal of hydrodynamics is match the (asymptotic) gradient expansion 
of any microscopic theory:  

Why should the gradient expansion by divergent in hydrodynamics? 

∇αTαβ = 0

Tμν = ℰuμuν + 𝒫(ℰ)(gμν + uμuν) + Πμν

Πμν = − ησμν + …



Causality and regulators

Known ways to do avoid acausal behaviour of Navier-Stokes theory:

• Mueller; Israel, Stewart (2nd order causal hydro)

• Bemfica, Disconzi, Noronha; Kovtun (1st order causal hydro)

Both these approaches introduce non-hydrodynamic modes which 
appear as a UV-regulator needed to maintain causality.

E.g. MIS (sound channel)  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Two options: 

• use hydrodynamics in regimes where it is independent of the regulator 

• match the non-hydrodynamic sector to some microscopic theory

Testing for regulator independence:

• Compare results between different MIS variants and BDNK

• Look at sensitivity to 2nd order TCs [Habich et al. 1512.05354]

• Check separation of hydro and non-hydro modes [MS 1607.06381]

Modeling the non-hydrodynamic sector:

• Leading QNM of N=4 SYM [Heller, Janik, MS, Witaszczyk 1409.5087]

• Quasihydrodynamics [Grozdanov, Lucas, Poovutticul 1810.10016]



Asymptotics of Bjorken flow in MIS

The equations of MIS hydrodynamics imply a first order ODE which 
determines the pressure anisotropy 
 
 
 
 
where

 
Asymptotic late-time solution (the gradient expansion):  
 

Universal - no dependence on initial conditions.
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Exponential corrections imply a transseries structure 
 
 
 

 
The form is determined by the non-hydrodynamic sector

 

• The hydro sector is universal: no memory of initial conditions

• The transseries parameter contains the initial data

• The transseries describes the dissipation of initial state information 

• Resurgence: all coefficients can be recovered from the hydro ones!
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Vector of QNM frequencies:  

Sectors labelled by   

Transseries sectors 
 

Transseries parameters (integration constants):
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The energy density of N=4 SYM as a transseries
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• Hydro sector:

• Fundamental sectors corresponding to individual QNMs 
 

• Mixed sectors corresponding to QNM coupling

Resurgence: all you need is the (hydrodynamic) gradient expansion.

n = 0 (380 coeffs)

n = e2 (200 coeffs)
n = e1 (250 coeffs)

n = 2e1 (100 coeffs)
n = e1 + e1 (100 coeffs)
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Late times linearised MIS

The shear channel dispersion relation is (+ is the hydro mode)  
 
 

The Green’s function of the corresponding linear problem solves 
 
 
 
It can be calculated exactly and satisfies causality constraints.
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Using standard asymptotic methods one finds  
 
 
 
 

 

This series is factorially divergent:  
 
 

The Borel transform can be done analytically 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The elliptic function K has a cut on the real axis; the location of the 
branch point of the Borel transform is set by the relaxation time.

Correspondingly, the Borel sum exhibits a complex ambiguity  
 
 

Thus, the answer is given up to an exponentially damped contribution  
 
 
 
To get a real result the transseries parameter must be

 
 
The non-hydrodynamic mode contribution cancels the ambiguity.

This matches the exact result for the Green function.
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Summary

• Gradient expansions appear both in microscopic theories and in 
hydrodynamic models and are asymptotic (and often divergent)

• The divergence is connected with the presence of non-hydrodynamic 
(gapped) modes which act as a UV-regulator necessary for causality

• The realm of applicability of hydrodynamics can be understood as the 
region of regulator-independence 

• It may be interesting and useful to formulate theories of 
hydrodynamics with specific non-hydrodynamic sectors


