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HYDRODYNAMICS

collective dynamics: liquids, graphene, neutron stars, quark-gluon plasma
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low-energy limit of QFTs — a Schwinger-Keldysh effective field theory

[Grozdanov, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani
(2015); Jensen, Pinzani-Fokeeva, Yarom (2017); ...]

expressed through conservation laws (equations of motion) of globally conserved
operators

V, T =0  V,J'=0 ... V,J" " =

tensor structures (symmetries and phenomenological Out ~ OT ~
gradient expansions) with transport coefficients (microscopic) ~ O ~ €

e (uA,T, 1) = (e + P)utu” + Pg'” — not’ — (V - uAM” + ...

JH(u, T, 1) = nu” — o TAPYY,, (1/T) + . ..




HYDRO

infinite, a

n=0

DYNAMICS

l-order hydrodynamic expansion

- N

> N
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vV, T =0

ut ~T ~ e

>
—twt+1qgz

the series receives non-analytic corrections
away form the large-N. limit; long-time tails

©.@)
w(q) = Z ant1q" "
n=0

CFT:
conformal symmetry constrains the series Weyl covariance
T, =0
state of the art for relativistic neutral hydrodynamics
max N max N in CFT
first order 2 1 Navier-Stokes (1821)
second order 15 5 BRSSS (2007)
third order 68 20 Grozdanov, Kaplis, PRD 93 (2016) 6, 066012

how does the all-order, infinite series behave?



ANOTHER MOTIVATION

expansion of the Bjorken flow solution (of energy density) in proper time is
asymptotic [Heller, Janik, Witaszczyk (2013); Heller, Spalinski (2015)]

[from Heller, Janik,
Witaszczyk (2013)]
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FIG. 1. Behavior of the coefficients of hydrodynamic series
for the energy density as a function of the order. At large
enough order the coefficients start exhibiting factorial growth.
The radius of convergence of the Borel transformed series is

estimated to be 6.37, in rough agreement with (9): 2/3 X
6.37 = 4.25.

What does this actually mean? Is this a “good feature” of hydrodynamics or does
this imply that hydrodynamics is inconsistent as an EFT? Is the Bjorken flow
pathological (expansion around vacuum, boost invariance, ...)? Can we conclude

that hydro is “an asymptotic series” in something (proper time, momentum?), like
perturbation theory?

we need to understand this more systematically and precisely



A TOOL: HOLOGRAPHIC DUALITY

duality: theory A = theory B

holographic or gauge/gravity duality is a result of string theory, which is a

quantum theory of gravity [Maldacena (1997)]

weakly coupled gravity

strongly coupled quantum theory

(much easier)

(extremely hard)

weakly interacting gravity allows to analyse certain strongly coupled microscopic

QFTs (e.g., N=4 supersymmetric Yang-Mills theory, ABJM, free bosons and

fermions, ...?)



HYDRODYNAMICS

holography is an extremely useful tool for studying

the structure of thermal spectra

the spectrum of field theory correlators equals

the quasinormal spectrum of frequencies

of dual black branes, plotted for w = _ccC:

27T
In N =4 supersymmetric
Yang-Mills theory at N, — oo
first order (1/1): n = )\(11) =4+ /A2 4 Buchel, Liu, Starinets (2004)
second order (5/5): >\7<;2) =i+ #/N2H i={1,...,5) Grozdanov, Starinets (2014)
third order (5/20): A = 4 i={1,...,5) Grozdanov, Kaplis (2016)
q4- _ 1 i o, 3-2n2 4 i (72 —24+24In2 — 121n° 2) iy
sound: W = ﬁq_ 67T—Tq 24\/§7T2T261 - 647373 q
. i 5, i(1-I2) , i(24In*2—7?) ¢
shear: W= =1 35373 9 96 (277" q
i [2r2(In32 — 1) — 21¢(3) —24In2(1 + In2(In 32 — 3))] , N
384 (27T)" !
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COMPLEX SPECTRAL CURVES

algebraic curves are solutions to polynomial equations  P(z,y) =0 = y(x)

e.g.: elliptic curves are o < 9 <
non-singular solutions of
v =z +ax+b, x,y R < C< C<

N
(NS

we will be interested in , such as cusps, self-intersections, ..., of

complex spectral curves (with P(x,y) not necessarily a polynomial)

P(z,y) =0 = y(z), z,y €C
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LOCAL ANALYSIS: PUISEUX SERIES

Taylor series is a series in integer powers of the expansion parameter

Puiseux series is a series in fractional powers of the expansion parameter

consider a simple example of an algebraic curve for x,y € C
Plx,y)=z*+y*—1=0

we want to find series solutions for y(x)

a is defined by P(x,,y,) =0, 0,P(x,,y,) # 0 atthe
regular point (z.,y,) = (0,1), the solution gives a Taylor series
2 4
Dy =1
y=y @) =1-F——+
a (of order 2) is defined by P(xz.,y.) =0, 0, P(zs,ys) =0, 0. P(z4,y.) # 0

here, two such points, (z.,y.) = (£1,0), each with two branches of Puiseux series, e.g.

|0
(V][oV

= ygp) (z) = ivV2(z — 1)% +12”
y=y5 (z) = —iv2(x —1)

(z = 1)

3

—i272(x — 1)

at (T4, ys) = (1,0) :

N[~
N

radius of convergence is distance to the nearest critical point: R{") =1, R(¥) =2
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CONVERGENCE OF HYDRODYNAMICS

hydrodynamic modes as complex spectral (or infinite-order algebraic) curves
[Grozdanov, Kovtun, Starinets, Tadi¢, PRL (2019) and JHEP (2019)]

hydro: det £(q?,w) =0

| 2 _ (2 W . q
QNM: a(q?,w) =0 P(q",w) =0 | =| wi(q") = _— qg=-—¢€C

e.g., first-order hydrodynamics: P;(q%, w) = (w 4 iDq2)2 (w2 + iTwq® — v?qQ) =0

analytic implicit function theorem (a regular point)

P(qf,ws) = 0, 0, P(dz,ws) # 0

Puiseux theorem: there exists a convergent series around a critical point (qZ, w,)

P(qiaw*) — 07 8wp(qz7w*) — 07 R 6£P(qzaw*) # O Pshear — 1

/ Psound = 2

(regular) ( 2 )(critical) . (0 O)

shear q., Wk sound

hydrodynamic series are Puiseux series around (q*,w)

WOshear = —7 Z Cn (qz)n = —i@q2 + ... Wsound = —? Z aneian (qZ)n/2 = +vsq — %®q2 + ...
n=1 n=1




CONVERGENCE OF HYDRODYNAMICS

o

radius of convergence of t(q) = chq” ,i.e. |q| < g, is set by the lowest momentum
i=1

at which the hydro pole collides (level-crossing): |g.« = min [|gcoision ] TR
q° = |q°| €'

0 Q a2l =1 | /\ =222 | /\ s

shear

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

sound
I

AAAAAAAAAAAAA

q. ~ 1.49131 0« = V2 ~ 1.41421

t(q,) ~ +£1.4436414 — 1.06922504 w0(q.) = +1 — i



HIGHER CRITICAL POINTS (E.G. SHEAR CHANNEL)




ANALYTIC STURCTURE

analytic structure of dispersion relations in momentum space

Branch cuts of the function tgear(q?) Branch cuts of the function Wgunq(q)
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UNREASONABLE EFFECTIVENESS

“unreasonable”: hydro works for large 0

dispersion relations > . radius of convergence
A w(g) =) ang > | ¢/T ~0(10)
are infinite series -

microscopic input
from holography

orders of magnitude larger than naive /T < 1 — if this factis generically true in
hydrodynamic theories, this may help explain the “unreasonable effectiveness of
hydrodynamics” which is the question of why hydrodynamics works in quark-gluon

plasma and other systems where derivatives are large
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SO... WHAT NOW

some of what
we know

Bjorken flow expansion in
proper time diverges

why? options:

dispersion relations converge
In momentum space

Fourier transform “generically” converts convergent series to divergent series

<

essential singularity at ¢ — o0
implies an asymptotic series

>

1
G(w,q) ~

w2_q2_m2

the Bjorken flow is sick, dispersion relations are well defined

<

>

Bjorken flow is non-linear whereas dispersion relations are only linear

<

>

coefficients in the series may grow faster but may also not; who knows...




ALL-ORDER HYDRODYNAMICS AND
MICROSCOPIC QUANTUM CHAOQOS
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C H A O S Lyapunov exponent butterfly velocity

v
IAZ(t,%x)| = |AZ(t;, x;)| et xl/vs)

classical chaos means extreme

sensitivity to initial conditions \

exponential Lyapunov divergence

of trajectories and the butterfly effect L
= 1

in quantum systems, molecules collide chaotically

the effect can be diagnosed with special “out-of-time-ordered”

correlation functions [Larkin, Ovchinnikov; Kitaev]

Ot %) = (W (%), V(0,0 [W (£, %), V(0,0)]),, ~ ecXe(t=1x/v2)

T \
1 / T butterfly velocity

scrambling time | t, = ~ In N | «—— typically, e=1/N? <1 Lyapunov exponent
L

its “build-up” describes the quantum butterfly effect

standard lore: “microscopic quantum information is smeared out at large distances”



CHAOS IN HOLOGRAPHY

Lyapunov exponent and butterfly velocity follow from the holographic shock

wave on the horizon of a two-sided black hole

ds® = A(UV)dUAV + B(UV)dxz* — A(UV)6(U)h(x)dU?

Lyapunov exponent saturates the Maldacena-Shenker-Stanford bound

)\L S 2T

what is the precise connection between hydrodynamics and chaos?

20
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POLE-SKIPPING

the phenomenon of pole-skipping makes precise the analytic connection
between hydrodynamics and chaos; true in “all” classical holographic

theories [Grozdanov, Schalm, Scopelliti, PRL 120 (2018) 23, 231601 arXiv:1710.00921;
Blake, Lee, Liu, JHEP 10, 127 (2018), arXiv:1801.00010;
Blake, Davison, Grozdanov, and Liu, JHEP 10, 035 (2018), arXiv:1809.01169]

resumed all-order hydrodynamic series (e.g. the sound channel)

wi(k) = Z V2n+1 k2n+1 — 1 Z F2n+2]€2n+2

passes through the “point of chaos”

PCI w(k:iko)Zi)\L, )\L=27TT, k():)\L/UB

which is defined through the fact that the (longitudinal) retarded energy density
two point function has both a pole and a zero at this point

G%)OTOO (w, k) =

b(w, k
w, ), lim a(w,k)= lim b(w,k)=0
CL(C«J,]{) (w, k) — P, (w, k) — P




POLE-SKIPPING

simple example: the SYK chain [Gu, Qij, Stanford (2017)]

22

) w2 : : . — g 2
- i (g 4 1) pole (diffusion): W 1Drk ol — AL
GTOOTOO (CU, k) = C— . — . v
—iw + Dpk? zero: W = IA\p B
in N =4 SYM theory at infinite N.:
ko = \/67TT

vp = Ap/ko = /2/3

point of chaos is inside

the radius of convergence

the reason for pole-skipping in holography is a special, new property of
Einstein’s equations at the horizon, which shall remain unexplained for today

[Blake, Davison, Grozdanov, and Liu, JHEP 10, 035 (2018), arXiv:1809.01169]



POLE-SKIPPING

pole-skipping occurs in all channels for complex values of frequencies and

momenta on the circles with fixed absolute values k.|, |w(k = k)|

[Grozdanov, Kovtun, Starinets, Tadi¢ (2019); Blake, Davison, Vegh (2019)]

Poovnd . w(k =k.) =1\, k. = 1kg
<Ttt(_w7_kz>7Ttt(w7kz)>

Péhear : w(k p— k‘c) p— —Z)\L kC — kO
(Tpr(—w, —k,), Tpr(w, k)

Pt w(k = ke) = —iAg ke = 1ho
<Twy(_w> _kZ)v sz!(w, k2)>

in the scalar channel, there are no hydrodynamic modes

a gapped mode experiences pole-skipping



POLE-SKIPPING

in A =4 SYM theory at infinite N. and infinite coupling

diffusion : w. = w(q. = qo) = —iAL Lyapunov exponent : A, = |w.| = 27T
sound : w. = w(q. = iqg) = I\ butterfly velocity : v = |w./q.]|
¢o € R

shear (diffusion):

<Tmz(_w7 _QZ)a Tacz (wa q,z)>

i 5, i(1-In2) , i(24In°2-77) g

397373 1 96 (2rT)°

i [27%(In32 — 1) — 21¢(3) — 24In2(1 + n2(In 32 — 3))] P
384 (27T)"




POLE-SKIPPING

in A =4 SYM theory at infinite N. and infinite coupling

diffusion : w. = w(q. = qo) = —iAL Lyapunov exponent : A, = |w.| = 27T
sound : w. = w(q. = iqg) = I\ butterfly velocity : v = |w./q.]|
¢o € R

sound:

<Ttt(_w7 —Qz), Ttt(wa Qz)>

. . 2 . 2
R 2 3—2In2 q3_z(7r 24+24In2 — 12In 2)(14i
V3©  6rT"  244/372T2 864m3T3
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POLE-SKIPPING

in A =4 SYM theory at infinite N. and infinite coupling

scalar : we, = w(qe = 1q0) = —IAL

¢ € R

Lyapunov exponent : A\, = |w.| = 27T

butterfly velocity : vg = |w./q.]|

scalar:

<T£L’y(_w7 —Qz), bey (wa C]z)>

Imt. Rew
2

26



POLE-SKIPPING AT FINITE COUPLING AND N¢

pole-skipping exists at finite 't Hooft coupling, and even for leading 1/N.
[Grozdanov (2019)]

for generic coupling and generic N, the situation is unknown; long-time tails,

possible only early-time exponential growth, multiple Lyapunov exponents, ...

at weak coupling, kinetic theory [Grozdanov, Schalm, Scopelliti, PRE (2018)] suggests

connection to hydrodynamics; the status of pole-skipping is unknown

intriguing connection to the KSS bound: n
vg =vg (1+9), "

:%(1+A)

T

thus, one may speculate

UB()‘ — g%/MNC — OOaNc) < UB()‘aNc) <1, withvg = 1as gypy —0

2

2
as a functions of coupling, then D=C-B > CUB()‘ — o)
AT 27T
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HIGHER POLE-SKIPPING POINTS

(holographic) CFTs exhibit an infinite tower of pole-skipping points (scalars,

currents, energy-momentum tensor components, fermions)
the frequencies are dominated by multiples of Matsubara frequencies

pole-skipping imposes constraints on the structures of correlators

example: 1+1 dimensional CFT dual to the BTZ black hole
[Grozdanov, Kovtun, Starinets, Tadi¢ (2019); Blake, Davison, Vegh (2019)]

o | (O(w, k)O(—w, —k)) 5

Im(k)

2T

wp = —12nTn, kyq,= 2277 (n —2q + A)

ne{l,2,...}, ge{l,....,n}
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[plot from Blake, Davison, Vegh (2019)]

similar structure exists even at finite 't Hooft coupling in N=4 SYM
[Grozdanov (2018); Natsuume, Okamura (2019); Wu (2019)]
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OTHER FUTURE DIRECTIONS

further applications of complex analysis and algebraic geometry methods to

studies of thermal and quantum spectra

pole-skipping or its generalisation in perturbative, weakly coupled QFTs

through our kinetic theory for quantum many-body chaos
[Grozdanov, Schalm, Scopelliti, PRE (2018)]

what is the physical meaning of pole-skipping?

other new (complex) analytic properties of hydrodynamics and thermal spectra
experimental signatures such pole-skipping or its generalisations?

towards rigorous proofs of various bounds, monotonicity statements, etc.

a better understanding of all aspects of physics for generic N; quantum gravity,

hydrodynamic long-time tails
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THANK YOU!



