A new look at Hydrodynamic Attractors
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In this talk: Bjorken flow, BRSSS, conformal

Bjorken flow
o ds?> = —d7? 4 12dx? + dy? + dz?

BRSSS, conformal hydrodynamics [Baier, Romatschke, Son, Starinets,

Stephanov]
e Second order equation for temperature T(7)

e First order equation for pressure anisotropy A(w), where
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The BRSSS attractor

e Solutions 10f

Solutions to the BRSSS equations for the pressure anisotropy

A'(w) = FIA(w), w]



The BRSSS attractor

e Solutions

e Gradient expansion

Gradient Expansion (= late time expansion)

Ak
Aw)=>" K
k
e Can be solved to very high orders (but diverges)

e Describes solutions asymptotically as w — oo



The BRSSS attractor

e Solutions

e Gradient expansion

e Slow-roll

Slow-roll
A/(W) = F[Aslow—roll(W)7 W] =0

e Can be improved in a series expansion, here we stick to zeroth
order



The BRSSS attractor

Solutions

Gradient expansion

Slow-roll

Attractor /regular
solution

The attractor/regular solution
lim A(w) is finite
w—0
e Close to slow-roll

e Solutions decay to it, even before the gradient expansion



The BRSSS attractor
e Solutions

e Gradient expansion

e Slow-roll

o
e Attractor/regular
solution
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The attractor/regular solution

10
lim A(w) is finite
w—0
e Close to slow-roll

e Some solutions decay to it, even before the gradient expansion



Is the attractor more attractive than others?

Decay toward the regular solution

Ao » === Regular solution » Gradient expansion 2nd order , == Slow-roll



Is the attractor more attractive than others?

Decay toward the regular solution Decay toward some random solution Ag

\

The regular solution attracts in the same way as every other
solution



Which solution is the most attractive?

Attraction depends on choice of metric
Usually left implicit as flat metric in plot variables.

For each w, distance is |[A1(w) — Ax(w)|

Solutions do not depend on choice of metric
Attraction and repulsion are not intrinsic properties of solutions



Attractors for non-autonomous dynamical systems

In hydro [Behtash, Kamata, Martinez, Shi - 1911.06406 + earlier papers]

Forward attractor Pullback attractor

X 5
wo w

Every solution Regular solution
Pullback attractor needs w — 0 limit and boundedness



Center manifold captures asymptotic dynamics

e Fixed point
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Center manifold captures asymptotic dynamics
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Center manifold captures asymptotic dynamics
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Center manifold - defined by matching onto the center subspace




Center manifold captures asymptotic dynamics

e Fixed point

e Linear regime - dynamics
determined by eigenvectors

of a matrix

e Stable subspace -
negative eigenvalue

e Center subspace -
vanishing eigenvalue

Center manifold - defined
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by matching onto the center subspace

Perturbative matching = non-perturbative ambiguities



Resummation of gradient expansion is not unique

@ Poles of Ag(x)

Ax 2
Aw)=>_ s 1
& =
:/ dxe Ag(x) =
0
where Ag(x) = /:f xk+1 1 > 3 7 5
k Relz]

Resummation gives family of solutions
As(w) — AL (w) ~ (o — J/)e_%w

The amplitude o of non-hydro modes is free

Is there anything that selects a preferred o7
Not in the large w regime



Modifying the expansion rate

Complementary analysis to [Kurkela, Schee, Wiedemann, Wu - 1907.08101]
for BRSSS

ds?® = —d7° + g(7)dx* + dy? + dz°
g(r)=r

e o =0 s flat
e o = 2 is Bjorken flow

e Some kind of transition at « = 6



7% expansion: Slow and fast limits

Solutions  Gradient Expansion  Slow-roll  Regular

Bjorken



7% expansion: Slow and fast li

Solutions  Gradient Expansion  Slow-roll  Regular

Slow expansion: Bjorken
convergence to
gradient expansion



7% expansion: Slow and fast limits

Solutions  Gradient Expansion  Slow-roll  Regular

Slow expansion: Bjorken Fast expansion:
convergence to convergence to
gradient expansion Regular and Slow-roll



Slow-roll is not an approximation to the regular solution.

The regular solution is an approximation to slow-roll!

e Slow-roll is defined locally at each w
e |dentifies a region in phase space, rather than a solution

e Easy to generalize to higher dimensional phase spaces

10



Slow-roll and adiabatic hydrodynamization

Adiabatic approximation
A evolves much faster than w
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For each w,, the system evolves to a fixed point where

A/(OO, W*) =0= F[Aslow—roll(w*)v W*]
A(W, W*) = Aslow—roII(W*) + Uei)\(w*)w

A(w)w

Aadiabatic(W) = Aslow—roII(W) +oe
N

Apre—hydro Aprefnon—hydro 11



BRSSS with T and 7: Phase space is two-dimensional

12



BRSSS with T and 7: Phase space is two-dimensional

T()T T()T

e Two-dimensional clouds become one-dimensional

e Hard to visualize for higher dimensions, but can be quantified
using e.g. PCA

e End up in the slow region
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Attractor from late time regime. :(
Resummation of gradient expansion / Center manifold / Forward

attractor

Attractor from w = 0. : |
Pullback attractor, but this requires singular limit w — 0

Attractor from slow-roll/adiabatic hydrodynamization. :)
Works at any w

e Expansion is important for attractor beyond gradient
expansion [Blaizot, Yan - 1904.08677], [Kurkela, Schee, Wiedemann, W,
1907.08101]

e Attraction is not an intrinsic property of a solution, need
metric on phase space

e Phase space can show the attractor without relying on A(w)

e Phase space may have higher dimensional attractors
13



Attractors in dynamical systems: Autonomous case

Include w as a state variable to make the system autonomous

0A

O —FlAGs), wi)]
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Attractors of autonomous systems: fixed points, periodic cycles



Attractors in dynamical systems: Autonomous case

Include w as a state variable to make the system autonomous

0A

O —FlAGs), wi)]
ow
= =1

Attractors of autonomous systems: fixed points, periodic cycles

In this setting, the attractor is thermal equilibrium
Fixed point at w =00, A=0



Dependence on parametrization

Non-linear changes of variables or mixing of time (w) and state
(A) variables changes things

A(w)w!
w41

A(w)w*

Slow-roll for A and for

wh+1
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