
REPORT ON THE WORKSHOP FOR WOMEN IN COMMUTATIVE
ALGEBRA

20–25 October 2019, Banff

Karen Smith, Sandra Spiroff, Irena Swanson, Emily Witt

This is a report on the first-ever workshop for Women in Commutative Algebra. We
organized and promoted the workshop around six working groups, each with two group
leaders who are experts in very active research subareas. The group leaders and the topics
of their groups were:

(1) Combinatorics and differential operators, leaders Christine Berkesch, University of
Minnesota, and Laura Matusevich, Texas A&M Univesity.

(2) Methods in prime characteristic, leaders Karen Smith, University of Michigan, and
Emily Witt, University of Kansas.

(3) Combinatorial commutative algebra, leaders Sara Faridi, Dalhousie University, and
Susan Morey, Texas State University.

(4) Rees algebra, leaders Elisa Gorla, University of Neuchatel, Switzerland, and Claudia
Polini, Notre Dame University.

(5) Finite resolutions and complexes, leaders Claudia Miller, Syracuse University, and
Alexandra Seceleanu, University of Nebraska.

(6) Tropical commutative algebra, leaders Diane Maclagan, University of Warwick, United
Kingdom, and Josephine Yu, Georgia Tech University.

We advertised the workshop on the AWM website and commalg.org. The application
website asked for the year of Ph.D., current affiliation and position, ranked preferences for
the groups, and any further relevant information. We had 98 candidates for the available
42 slots and we had to make some tough choices in selecting the participants. Depending
on the preferences we divided the participants into the six groups so that each group would
have about seven participants. We had a few cancellations, some of which we were able to
replace, but due to late cancellations we were unable to replace two of the slots.

The main focus of the workshop was group work. On the morning of the first day the
group leaders briefly presented the topics to all participants, and we met again in late after-
noon to summarize the day’s work. While the day’s reports were interesting and informative,
most groups felt that the afternoon meeting disturbed the work. Thus we did not have an
all-participant meeting on Tuesday, but we did do brief summaries on Wednesday evening
and longer summaries on Friday morning. On Thursday evening we had a group discus-
sion/general panel long into the night in the social room on careers, professional climate,
teaching advice, Ph.D. advising, and so on.

Date: January 6, 2020.
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We received a favorable report from the AWM ADVANCE evaluation team. Some excerpts
from that report are:

Logistics: “Participants who responded to the survey were very happy with the workshop
logistics. Most respondents (97%) agreed that the application process was convenient or
agreed that accommodations were satisfactory (98%). Every participant (100%) thought
the conference facilities were adequate,..”

Group Size & Effectiveness: “Most respondents (69%) thought their group size was just
right, but a substantial minority (28%) thought their groups were too large and one person
thought her group was too small. .... Most respondents (94% to 100%) expressed broad
support for their workshop group, were favorably disposed toward their workshop project,
and expected to continue collaborating with their group members...”

Conference Expectations and Future Intentions: “The majority of respondents (97%) would
attend this conference again as a member and almost every participant (97%) would recom-
mend this workshop to a friend. Three quarters (75%) of respondents indicated that they
would attend this workshop again in the future as a workshop leader.”

Productivity: “The women who attended the workshop and responded to the survey
are very productive in terms of research, despite having so many junior scholars.... All
participants (100%) had presented their research in the past two years and more than two-
thirds (70%) had received external funding.”

Collaborative Experience and Attitudes: “Most WICA participants (97%) have experi-
ence collaborating on a project for publication....As the research literature suggests, there
are trade-offs to collaborating;....While most participants claimed that collaboration requires
more communication (59%) and coordination (66%), no one (0%) thought that it slowed their
career advancement.”

Summary: “Based on this report, the WICA RCCW appears to have been very successful.
As one participant wrote in her open-ended comments, ‘It was so fantastic an environment.
The people were so nice, so good to work with, so smart. It felt so different and so relaxing
to work with and talk to women all week long.’ ”

A last comment regarding the AWM is that, through their ADVANCE grant NSF-HRD
1500481, they provided the WICA workshop with $4000 in travel funding for some of the
participants. For those at US institutions, additional travel funding was obtained from the
National Science Foundation, DMS-1934391. Organizer Spiroff was the PI on the grant, with
organizers Smith, Swanson, and Witt providing support of the proposal as Senior Personnel.

All working groups reported substantial progress in research and concrete plans to continue
working on the started projects. Below are the summaries of the mathematical content of
the six groups.

1. Combinatorics and differential operators

Group leaders: Christine Berkesch and Laura Matusevich.
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Group members: Jean Chan, Patricia Klein, Janet Page, Janet Vassilev.

Overview. The ring of k-linear differential operators (k a field) over a commutative k-
algebra R is defined as D(R) = ∪∞n=0D

n
k (R), where D0

k(R) = R and Dn
k (R) = {P ∈ Endk(R) |

Pf − fP ∈ Dn−1
k (R) for all f ∈ R}. It is a fact that D1

k(R) = R+ Derk(R), where Derk(R)
is the space of k-linear derivations on R, but we point out that in general, the derivations
are not enough to generate D(R) as a k-algebra.

When R is the polynomial ring over a field of characteristic zero, D(R) is the well-known
Weyl algebra, the ring of linear differential operators with polynomial coefficients. When
char(k) > 0, D(R) is the divided powers Weyl algebra, which is also well understood.

Rings of differential operators were introduced by Grothendieck [18] and Sweedler [32].
It is known that D(R) can shed light on Spec(R), and the study of differential operators is
of wide interest in commutative algebra and algebraic geometry. For example, the theory of
Bernstein–Sato polynomials [6, 29], which is of much relevance for studying singularities in
algebraic geometry [37, 23, 22, 14, 11] relies on an explicit understanding of D(R). Also, an
explicit description of D(R) in the case where R is a reduced monomial ring of characteristic
p > 0, is used in [34, Corollary 5.5] to prove that tight closure commutes with localization
in that setting.

While differential operators are both intrinsically interesting and useful once an explicit
description is given, providing such characterizations for specific (classes of) varieties is not
easy. Due to this inherent challenge, we aim to compute rings of differential operators in
combinatorial settings, where the additional structure gives rise to specialized tools that are
not available in general.

When R is a Stanley–Reisner ring, D(R) has a combinatorial description [34] in terms of
the associated simplicial complex. This description applies over any base field k, regardless
of the characteristic. Affine toric varieties and their coordinate rings (semigroup rings) form
another fundamental class of examples. In this case, the ring of differential operators is
known when the base field k is algebraically closed of characteristic zero [21, 27, 30, 31].

The Group Members. The members of this working group represent a broad cross-section
of commutative algebra. In order to study rings of differential operators in combinatorial
contexts, our participants bring expertise in combinatorial aspects of algebra and geometry,
including toric geometry, convex geometry, Stanley–Reisner theory, D-modules, characteris-
tic p methods, singularity theory, homological algebra, and affine semigroup rings.

Given our very different areas of specialization, this is a collaboration that could only have
been developed during an event such as this. The group chemistry has been exceptional,
and all participants are strongly committed to the success of this project. We are deeply
grateful to the workshop organizers and BIRS, for making this possible for us.

Our Results and Future Directions. During the Workshop, we focused on computing
rings of differential operators over quotients of semigroup rings by radical monomial ideals
(the base field is assumed to be of characteristic zero). We have a working conjecture in this
case, and are in the process of proving it. This result could be an article on its own, but
we believe that our ideas can be applied in more general contexts. Future plans also involve
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considering the case when the base field has positive characteristic. In this case, even the
differential operators over semigroup rings are not known.

2. Methods in prime characteristic

Group leaders: Karen Smith and Emily Witt.

Group members: Eloisa Grifo, Zhibek Kadyrsizova, Jenny Kenkel, Jyoti Singh, Adela
Vraciu.

We began an investigation of the moduli space of Frobenius split (or globally F-regular)
projective varieties.

For a ring of prime characteristic, F-purity and F-regularity are nice-ness assumptions
defined using the p-th power (or Frobenius) map. Their study was pioneered by Hochster,
in collaboration first with Roberts and later with Huneke. Important contributions were
made in the early stages also by several Indian mathematicians, notably Mehta and Ra-
manathan (who used the term ”Frobenius split” for what is usually known as ”F-purity”
among commutative algebraists).

The conditions of F-purity and F-regularity on R place strong algebraic conditions on
R such as various local cohomology modules vanishing. They also place strong geometric
restrictions on the projective variety whose homogeneous coordinate ring is R (called ”log
Calabi-Yau” and ”log Fano”, respectively) by a theorem of Schwede and Smith. These
conditions are important in algebraic geometry. The study of the moduli spaces (parameter
spaces) of such varieties is quite active.

We approached this from an algebraic point of view. Although moduli of smooth cubics
has been studied in prime characteristic, and moduli of log Fanos have been studied in
characteristic zero, no systematic classification, up to isomorphism, of the set of all finitely
generated graded algebras (of fixed characteristic p) that are F-pure (or F-regular) has been
completed.

At Banff, we focused on finding a moduli space for F-pure cubic surfaces of characteristic
two. For various reasons, cubic surfaces of characteristic two are especially interesting. It is
important to note that even for smooth cubics in this case, very little was understood until
recently (for example, there is a 2018 preprint of Dolgachec and Duncan ).

What we accomplished at WICA: Let f be a homogeneous polynomial of degree d in n
variables. We assume f is non-degenerate in the sense that the projective scheme in defines
in Pn−1 is not contained in a hyperplane. This is what we accomplished:

(1) When d = 2 and n is arbitrary, we used the theory of quadratic forms to observe
that there are only finitely many isomorphism types of quadric hypersurfaces in every
charcteristic, though the story is a bit different in characteristic 2. Among these, we
saw that all are F-pure, except the completely degenerate “double hyperplanes.”

(2) When d = 3, we may have finished the classification of non-F-pure cubics in char-
acteristic 2. It appears there are finitely many and we can enumerate representatives
of each isomorphism class.
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(3) When d = 3, we developed a program to prove that the F-pure cubics hypersurfaces
in characteristic 2 are parameterized by the punctured four space A4 modulo a finite
group action. Some details remain to be checked.

We intend to write the results of items (1) and (2) into a paper sometime soon and get
together, hopefully this summer, to complete the work in (3).

Many open-ended areas of exploration remain and we hope to pursue them together in
the future.

3. Combinatorial Commutative Algebra

Group leaders: Sara Faridi and Susan Morey.

Group members: Susan Cooper, Sabine El Khoury, Sarah Mayes-Tang, Liana Sega, and
Sandra Spiroff.

None of the participants in this project had collaborated previously and the team involved
participants at a variety of stages of their careers, resulting in beneficial new mentoring and
research relationships.

The main question they worked on was: given an ideal I generated by monomials in a
polynomial ring, if we know I has a free resolution supported on a simplicial complex ∆,
can one find, from ∆, another simplicial complex supporting a free resolution of I2? What
about Ir for any r?

A free resolution of an ideal is a way to encode the relationships between the generators
of the ideal into a sequence of free modules and maps between them. The smallest free
resolution of I (in terms of the ranks of the modules involved) is unique up to isomorphism
of complexes, and is called a minimal free resolution of I. If K is a field and I an ideal in
the polynomial ring S = K[x1, . . . , xn], then the minimal free resolution is an exact sequence
of free S-modules

0 −→ Sβp −→ . . . −→ Sβ1 −→ Sβ0 −→ I −→ 0,

where for each i, the non-negative integer βi is called the i-th betti number of I. In the
specific case of a monomial ideal, the betti numbers can be refined further into multigraded
betti numbers, which are indexed by monomials in I.

The idea of supporting a resolution on a simplicial complex was initiated by Diane Taylor,
who in her thesis [33] introduced a multigraded free resolution of a monomial ideal using
the simplicial chain complex of a simplex whose vertices are labeled with the monomial
generators of the ideal. Taylor’s resolution always exists for any monomial ideal, but it is
usually far from minimal. Taylor’s work was extended in the decades to follow by discovering
criteria for subcomplexes of the Taylor complex to support free resolutions of a monomial
ideals [5, 4] and then further to cell complexes [5] and CW complexes [3, 20]. But it is shown
by Velasco [36] that even CW complexes do no support all minimal resolutions.

The study of the behavior of powers of a fixed ideal is a classical problem. The powers of
an ideal are used via the Rees algebra and related blowup algebras to understand resolutions
of singularities, and are also of interest in their own right. For example, in [19], the depth
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function depthR/Is is defined as a function of s. While this function is known to stabilize
and the limiting behavior is known, finding the depths of the early powers of an ideal is an
active area of research. Other invariants that are often studied for powers of ideals include
regularity and associated primes. Having resolutions of the powers of an ideal that were
close to minimal would provide a useful tool to advance all of these areas of study.

A second approach to studying powers of ideals is to understand their asymptotic behavior;
often, there is uniformity in the limit that is not seen when studying individual members
of the ideal. One direction of asymptotic relationships relates to the graded betti numbers
of all powers of a monomial ideal, which are usually summarized in a two-dimensional betti
table of the ideal. Recent research has demonstrated strong patterns in the sequence of betti
tables of powers of a fixed ideal, both in cases where the tables eventually stabilize [25] and
in cases where they continue to grow without bound [2].

The investigations of this group would tell us more about the graded betti numbers of
powers of monomial rings, and could allow us to discern asymptotic patterns. It could also
give new effective bounds for betti numbers of powers of monomial ideals.

For the purpose of a more concrete class of resolutions, the group began investigations
at the recent Banff workshop by focusing on a special class of ideals whose resolutions are
better-known, namely, those ideals that have resolution of length (“projective dimension”)
at most one [15], whose resolutions are supported on graphs. They were able to identify a
structure that conjecturally supports a resolution of Ir for this class in general and prove
that when the number of generators of the ideal is small, the conjecture holds for low powers,
particularly r = 2. Along the way, they adapted an algorithm from [1] that prunes a Taylor
resolution and produces a cellular one for a given monomial ideal to one that works in their
setting.

The members of this research group came from varying areas of commutative algebra.
Their differing mathematical backgrounds brought strength to the project, but the project
also allowed each woman to expand her knowledge in the field. This area of research lies
in the intersection of homological algebra and discrete topology. The field of combinatorial
homotopy theory is rich with tools that, once found, any commutative algebraist could find
indispensable (see [7] for a catalogue of some such tools). The expertise that the participants
each brought (powers of ideals, combinatorial resolutions, homological methods, graph the-
ory) allowed the group to produce a unique line of research and provides an opportunity of
cross pollination by learning from the expertise of one another.

Since the conclusion of the Banff workshop, the group has agreed on how to advance the
project given their disparate locations and the group’s relatively large size. Their research
is on-going. They have created a Dropbox for their project and have uploaded and shared
various documents. Likewise, they have organized regular Skype meetings and intermittent
visits of subgroups of the women and they have started applying for 1-2 week residential
research opportunities, with an application to MSRI already submitted. In addition, face-
to-face meetings are scheduled over the next several months at various locations.
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4. Rees algebras

Group leaders: Elisa Gorla and Claudia Polini.

Group members: Ela Celikbas, Emilie Dufresne, Louiza Fouli, Kuei-Nuan Lin, Irena
Swanson.

Let X be an m×n matrix whose entries are either zeros or distinct variables. A matrix X
is generic if its entries are distinct variables, it is sparse generic if its entries are either zeros
or distinct variables. Let R = K[X] be the polynomial ring over a field K with variables
the entries of X. Let I be the ideal of R generated by the maximal minors of X, I is called
a (sparse) determinantal ideal. The study of rings and more generally of varieties that are
defined by determinantal ideals of generic matrices has been a central topic of commutative
algebra and algebraic geometry, see for example [9]. Sparse determinantal ideals were first
studied by Giusti and Merle [17]. Recently, Boocher [8] determined their minimal free
resolutions.

During the week at Banff, we studied the blowup algebras of sparse determinantal ideals,
precisely their Rees algebras and special fiber rings. The Rees algebra of an ideal J ⊆ R
is the graded algebra R(J) = ⊕∞i=1J

iti ⊂ R[t], where t is an indeterminate over R, and
the special fiber ring F(J) is R(J)/mR(J), where m is the maximal (homogeneous) ideal
of a local or graded ring R. The Rees algebra encodes many of the analytic properties of
the variety defined by J and is the algebraic realization of the blowup of a variety along a
subvariety. It plays a crucial role in the resolution of singularities of an algebraic variety.
From the algebraic point of view the Rees algebra facilitates the study of the asymptotic
behavior of the ideal and it is an essential tool for the computation of the integral closure
of powers of ideals. Both the Rees algebra and the special fiber ring can be realized as
quotients of polynomial rings. In particular, if J has n generators then R(J) is of the form
R[T1, . . . , Tn]/L, where L ⊆ R[T1, . . . , Tn] is the defining ideal of the algebra. The generators
of L are the defining equations of R(J). Although blowing up is a fundamental operation, an
explicit understanding of this process remains an open problem – for instance it is difficult in
general to describe the generators of L. When J is generated by forms of the same degree, as
in the case of sparse determinantal ideals, the problem of computing L explicitly is a classical
problem in elimination theory. This question has been addressed in well over one hundred
articles by commutative algebraists, algebraic geometers, and applied mathematicians. The
problem is difficult and each class of ideals (or rational maps) seems to require different
techniques. During the week at Banff, we studied this problem using techniques coming
from SAGBI and Gröbner basis theory.

In the special case when I is the ideal generated by the maximal minors of a generic
matrix, the Plücker relations among the minors are quadratic equations and they are the
generators of the defining ideal of the special fiber ring. Together with the defining equations
of the symmetric algebra, they are the defining equations of the Rees algebra.

We focused on the case when I is the ideal of maximal minors of a 2 × n sparse matrix
X. Our first goal was showing that in(R(I)) = R(in(I)), where in(R(I)) denotes the initial
algebra of the Rees algebra of I and R(in(I)) denotes the Rees algebra of the initial ideal
of I, with respect to suitable term orders. In situation when such a theorem holds, one can
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study the monomial algebra in(R(I)), then use standard deformation techniques to deduce
properties for R(I) from those of in(R(I)).

By [12] the equality in(R(I)) = R(in(I)) would follow if we showed that in(Ik) = (in(I))k

for all k ≤ rt(in(I)), where rt(in(I)) denotes the relation type of in(I). By Conca, De Negri,
and Gorla [?], the maximal minors of X are a universal Gröbner basis for I. By selecting
a suitable term order and using results of Corso and Nagel [13] and Villarreal [36], we were
able to determine the defining equations of R(in(I)), in particular we obtained rt(in(I)) = 2.
By comparing Hilbert functions we were able to show that in(I2) = (in(I))2. Coupling this
result with [12] we concluded that in(R(I)) = R(in(I)). Following the approach outlined,
we were able to prove the following.

Theorem. (a) R(I) is of fiber type and in particular, the defining ideal of R(I) is given by
the relations of the symmetric algebra of I and by the Plücker relations on I.

(b) R(I) and F(I) have rational singularities (or they are F -rational in the positive charac-
teristic case).

(c) R(I) and F(I) are Cohen-Macaulay normal domains.
(d) The Plücker relations of I form a Gröbner basis for the defining ideal of F(I).
(e) R(I) and F(I) are Koszul algebras.

Next we plan to study the case of sparse generic matrices of arbitrary size. Furthermore,
we would like to consider the case where the entries of the matrix are linear forms.

5. Canonical Resolutions using Koszul Algebras

Group leaders: Claudia Miller and Alexandra Seceleanu.

Group members: Faber Eleonore, Lindo Haydee, Martina Juhnke-Kubitzke, Rebecca R.G.

The project involves generalizing some canonical resolutions over polynomial rings to the
setting of Koszul algebras. An algebra is Koszul if the residue field has a linear resolution,
that is, has Castelnuovo-Mumford regularity equal to zero. A necessary condition is that its
defining relations are quadratic, but not every quadratic algebra is Koszul.

Although the definition may seem specialized, in fact, Koszul algebras show up naturally in
many places in algebra and topology. They were first introduced by the algebraic topologist
Priddy in 1970 in [28] as algebras for which the bar resolution, which is far from minimal, can
be reduced to a very small subcomplex. This explained ideas that had been floating around
in the work of May on restricted Lie algebras and of Bousfield, Curtis, Kan, Quillen, Rector,
and Schlesinger. Koszul algebras have since appeared naturally in many places, linked to
fundamental concepts, and studied extensively in fields as diverse as topology, representation
theory, commutative algebra, algebraic geometry, noncommutative geometry, and number
theory.

Furthermore, the associated theory of Koszul duality is a generalization of the duality
underlying the Bernstein-Gelfand-Gelfand correspondence describing coherent sheaves on
projective space in terms of modules over the exterior algebra. This exemplifies the special
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relevance of the pair of Koszul dual algebras given by a polynomial ring and an exterior
algebra, as well as the philosophy that facts relating these algebras often have Koszul duality
counterparts.

Our project involves taking results that describe resolutions of various modules over a
polynomial ring S constructed starting from the Koszul complex (exterior algebra) Λ and its
generalizations and proving analogs of these results using any pair of Koszul dual algebras,
A and A⊥, instead of S and Λ.

The main first goal was to generalize the canonical resolutions over a polynomial ring
for the powers of the homogeneous maximal ideal constructed by Buchsbaum and Eisenbud
in [10] to obtain free resolutions for powers of the homogeneous maximal ideal of a Koszul
algebra. As opposed to working over S, in general these would be infinite resolutions. We
achieved this goal and wrote a complete proof over the first few days. We were aided in our
endeavor by learning from another workshop participant (Şega) that these resolutions were
linear. The next step will be to put a differential graded algebra structure on the resolutions
we have constructed. Such a structure is enormously helpful in further homological explo-
rations. For this, we have a clear method of building it based on a known technique if we
can define an appropriate homotopy, for which we have some ideas.

Last, we wanted to extend the theory of Macaulay inverse systems from polynomial rings
to Koszul algebras. For this extensive project, the first step would be to obtain some un-
derstanding of the injective hulls of the residue field over the Koszul algebra as well as its
quotients. We made progress in understanding some of these, and realized that even an
extension to one class of Koszul algebras would be a large step beyond the known theory
over polynomial rings. For this we have a candidate that would give an important extension
and have made progress in studying it.

If we successfully develop this theory, then we will be able to apply it to obtain a much
large class of resolutions by expanding work of one of the co-leaders over polynomial rings
[26] to this class of Koszul algebras.

The workshop was invaluable for us in forming research collaborations with women, when
so many of us are in departments with almost all men. Indeed, most in our group had
never worked with the others, and, even though we share common interests in homological
commutative algebra, had never worked on the same topics before, and particularly not on
Koszul algebras.

On the last half day of the workshop, we spent an hour of intensive discussions with
another group (Berkesch and Matusevich) about a potential connection between our projects,
more specifically about whether the same methods in our project could have some hope of
providing an application to their topic of interest, and we hope to get in touch once we know
better how our separate projects develop. This gives us even more connections for future
collaborations with some of the best women in our field.

In the weeks since the workshop ended, our group has kept working regularly. We have
started writing the result we obtained, and we have had some online meetings in subgroups
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to keep working and discuss issues issues arising from further explorations of the literature.
We have a joint folder where we keep background literature and written summaries of the
information from each meeting for those who could not make the meeting time.

6. Tropical commutative algebra

Group leaders: Diane Maclagan and Josephine Yu.

Group members: Francesca Gandini, Milena Hering, Fatemeh Mohammadi, Jenna Rajch-
got, Ashley Wheeler.

One motivation of this group was to investigate whether the tropical Bertini theorem of
[24] holds in characteristic p. This theorem states that when X ⊂ (K∗)n is an irreducible
variety over an algebraically closed field K of characteristic zero, then the set of rational
hyperplanes H for which trop(X)∩H is the tropicalization of an irreducible variety is dense
in PnQ. The characteristic assumption comes from the use in the proof of a toric Bertini
theorem of Fuchs, Mantova, and Zannier [16], which has a characteristic zero requirement.
While there are counterexamples in characteristic p to the method of proof of the toric Bertini
theorem of [16], these do not immediately give a counterexample to the Bertini statement,
and even such a counterexample would not necessarily give a counterexample to the tropical
variant.

Some progress was made towards this goal, and the group has already begun follow-up
meetings.
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