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measuring stabllity for understanding
ecosystem responses 1o stress



he babel o stability

Grimm & Wissel Oikos 1997



Stabllity properties/concepts/dimensions/
facets/components/meanings/...

Stability concepts

1970s 1980s 1990s 2000s
Constancy Stable Constancy Nonpoint Attractors
Persistence Persistence Persistence Persistence
Inertia Resilience Resilience Variability
Elasticity Resistance Elasticity Alternative States
Amplitude Variability Resistance
Cyclical Stability Domain of Attraction
Trajectory Stability
(Orian 1975) (Pimm 1984) (Grimm & Wissel 1997) (lves & Carpenter 2007)




ecological state

Stabllity properties/concepts/dimensions/
facets/components/meanings/...
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how do we measure Stabillity - a review

« 459 papersreviewed 1900-2018 from 9 ecological journals
« empirical and theoretical papers (focusing on communities)

Kefi et al 2019 Ecol Lett



how do we measure Stabillity - a review

501 (a) 301(b)

i o

89 20-

8 5 301 )

% B o0 = E

2 £ 1 = |

© # 10 % %

g 10 - ggg - .

8 ], 188 :
| O_ [_}_l 11 M |
1950 1970 1990 2010 20 60 100

publication decade # times metrics used

« 459 papersreviewed 1900-2018 from 9 ecological journals

« empirical and theoretical papers (focusing on communities)
« 34 different metrics used since 2010

¢ some metrics used more than others

Kefi et al 2019 Ecol Lett



how do we measure Stabillity - a review

Response i
Stability of what?

Perturbation i i
Stability to what?

2% Pulse All species |
ﬁ Partial
32% Press (some species) | 25%
Aggregated
41% Null (community) [ 599
5% | :
Noise

« 1.4 perturbations per study
* most responses measured on higher level

 mostly 1 metric per study
« only 2% combine theorefical with empirical measures

Kefi et al 2019 Ecol Lett



but, which metric(s) describe the overall
stability of a community?



multidimensionality of stability
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multidimensionality of stability

Can we guantity the dimensionality of stability
based on metric correlationse




multidimensionality of stability

Can we guantity the dimensionality of stability
based on metric correlationse

« generated foodwebs with niche model

« bioenergetic model with allometric scaling
« simulated communities from 5 to100 species
* Using random parameter distributions

« only focused on stable equilibrium solutions
« estimated 27 metrics from the literature

« measured pairwise rank cross-correlations

Dominguez-Garcia, Dakos, Kefi (in revision)



pair-wise Spearman ranked correlations
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Dominguez-Garcia, Dakos, Kefi (in revision)
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E.Q.

<CE>: Cascading extinctions

Rinf: asymptotic resilience

ls: invariability

RE: resistance of total biomass to extinctions

TM: Tolerance to mortality (Structural stability)



correlations depended on community size
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« biggest difference few species networks

Dominguez-Garcia, Dakos, Kefi (in revision)



three groups based on modularity algorithm

Dominguez-Garcia, Dakos, Kefi (in revision)



three groups based on modularity algorithm

A) Early response
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RE: resistance of total biomass to extinctions

bominguez-Garcia, Dakos, Kefi {in revision) TM: Tolerance to mortality (Structural stability)



(dis)-similarity between metrics
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5O, which metric(s) to use?

Dominguez-Garcia, Dakos, Kefi (in revision)



so, which metric(s) to use?¢
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Dominguez-Garcia, Dakos, Kefi (in revision)



5O, which metric(s) to use?

at least 1 metric per group

depends on:
-type of disturbance
-level of correlation
-feasible to measure

« not all correlations clear mathematical link:
need for assessing latent links (if they exist)
for clarifying which metric to use

Dominguez-Garcia, Dakos, Kefi (in revision)



measuring changes in stability for
detecting abrupt ecosystem responses



catastrophic shifts in ecosystems

Shallow
lakes

Lake Sheeler
oto by A. Murray
Copyright 2003 Univ. Florida

Coral reefs




shallow lake Tipping points to eutrophication

Uhimann 1980, Developments in Hydrobiology



shallow lake Tipping points to eutrophication
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Uhimann 1980, Developments in Hydrobiology




tipping point

(catastrophic
bifurcation)

ecosystem state
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systems prior to tipping points slow down




catastrophe theory and catastrophe flags

Thom 1976

Gilmore 1981



far . . . 5 5
tipping point indicators
\oping point
far from tipping close to tipping leading indicators
(Early Warnings)
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Method

Metric-based
Autocorrelation at-lag-1

Autoregressive coefficient of AR(1) model
Return rate (inverse of AR(1) coefficient)
Detrended fluctuation analysis

Spectral density

Spectral ratio (of low to high frequencies)
Spectral exponent

Standard deviation

Coefficient of variation

Skewness

Kurtosis

Conditional heteroskedasticity

BDS test

Model-based

Time-varying AR(p) models

Nonparametric drift-diffusion-jump models
Threshold AR(p) models

Potential analysis (potential wells estimator)

tools for fipping point detection — in time and space

Early
Warning
Signals

early-warning-signals.org

~

earlywarnings

github.com/earlywarningtoolbox
github.com/spatial-ews/spatialwarnings

Dakos et al 2012, PLoS One
Ives & Dakos 2012, Ecosphere
Boettiger & Hastings 2013, J R Soc Int
Kéfi et al 2014, PLoS One
Seekel & Dakos 2015, Ecology & Evolution



1. Rank resilience across

, 19, Moni’ror chonges N

~ Ultimate aims:

systems/sites/species
(hotspots)



RCP8.5: 2081-2100
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RCP8.5: 2081-2100

WHAT.
we estimated variability in future temperatures at global
scale using predictions from climate models
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RCP8.5: 2081-2100

WHAT.
. we estimated variabllity in future temperatures at global
scale using predictions from climate models
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Increased temperature variability
as proxy for hotspofts of climate sensifivity

defrended record 2055-2084
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Bathiany, Dakos, Scheffer, Lenton 2018, Science Advances



Increased temperature variability
as proxy for hotspofts of climate sensifivity

defrended record 2055-2084
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« temperature output from 37 models from the Coupled
Model Infercomparison Project 5 (CMIPJS)

Bathiany, Dakos, Scheffer, Lenton 2018, Science Advances



Relative changes in variability of monthly tfemperature until 2100

Bathiany, Dakos, Scheffer, Lenton 2018, Science Advances



Relative changes in variability of monthly tfemperature until 2100
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Climate injustice

« Strong CO, emitters least affected

Poor rewards ® Asia @ Europe @ Latin America
Change in variability of climate and GDP per person @ Middle East & North Africa @ North America
® Oceania @ Sub-Saharan Africa
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Source: “Climate models predict increasing temperature variability in poor countries”,
by Sebastian Bathiany, Vasilis Dakos, Marten Scheffer and Timothy M. Lenton, Science Advances, May 2018

(redrawn by the Economist)

« Poorest countries face highest variability



summing up

. Ecological dynamics
xet

o \

Catastrophic shifts

« Stability metrics strongly correlated but unclear their
mathematical link: (if they exist)this will help clarifying
which metric to use

« Well-developed toolbox for using temporal (and
spatial) fluctuations to detect tipping points: challenge
to apply them in practice
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Early |

Warning QW

Signals
early-warning-signals.org
github.com/earlywarningtoolbox



theoretical challenge - too generic?

Rapid Regime Critical Slowing

Shifts Down
Saddle node
bifurcation

V chaolic Hopf, IV

Crisis, transcritical

. 7=\
external focing, Maxwell bifurcations smooth

stochastic events paint transitions
transition

There can be tipping points without There can be EWS without
EWS tipping points

Boettiger et al. 2013



Method

Data

Details

References

Trends in statistical
signals

Model selection using

likelihood ratio tests

Across sample variance

Conditional

heteroskedasticity

Measures of reduced

complexity

Spectral density ratio

Fisher information

Quickset change points

Pattern-based spatial
signals

Generalised modelling

Trends in statistical signals
of BDI models

Network-based

Trends in fitness-related
traits

Combined signals

Clements & Ozgul 2018

Abundance or spatial

Abundance

Abundance across
multiple sites

Abundance

Abundance or spatial

Abundance

Spatial or abundance

Abundance

Spatial

Abundance and
structural information

Rate information

Abundance and spatial

Trait

Abundance and spatial,
abundance and trait

Strong temporal trends — typically estimated using a sliding window
approach — in a variety of generic warning signals in the direction
predicted by theory (e.g. increasing variance and autocorrelation)
indicate an approaching collapse. In spatial contexts, trends may be
in spatial variance, spatial skewness or spatial correlations

Models representing deteriorating and stable conditions are fit to
data, with model selection used to determine which (deteriorating
or stable) best describes the observed data

Estimates the between-survey sample variance across multiple
sampling sites within the same population. Appears to be robust to
significant sampling errors

Conditional heteroskedasticity implies that variance at one time step
is highly related to variance in the proceeding time steps. Thus, as
a tipping point is approached the portion of the time series in the
vicinity of the bifurcation will appear as a cluster of high variability
when compared to areas of the time series away from the
bifurcation point

Changes in the randomness of the system are inferred through
changes in the Kolmogorov algorithmic complexity, with reduced
randomness (increased complexity) indicating less white noise in the
system and hence a looming bifurcation

Spectral density ratio measures the ratio of high- to low-frequency
processes in a time series, with a shift to low frequency-dominated
processes (spectral ‘reddening) indicating an approaching collapse

Captures patterns in the dynamics of a system from trends in
variables that characterise its condition. Multiple variables are
combined into a single index that can track changes in the dynamic
order of the system

Employs two models [collapse vs. no collapse, as in Boettiger &
Hastings (2012b)] which are updated with each input of new data.
A signal is generated when the likelihood ratio exceeds a predefined
threshold based on the user’s tolerance for false alarms

Changes in the organisation and patchiness of strongly spatial
ecosystems can be indicative of regime shifts, in particular shifts in
patch-size distributions, occurrence of self-organising patterns based
on ‘Turing instability’ and deviation from observed power law
distribution of patch sizes

A generalised model is constructed of the system which describes the
structure of the system without specifying specific functional forms,
typically this entails identifying critical system variables (e.g.
abundance) along with processes (e.g. birth rate) or other
information (e.g. mortality is likely to be linear)

Extensions of trend-based signals developed by Dakos er al. (2012)
and others, whereby emergent diseases can by forecast by looking
for trends in signals such as the coefficient of variance from the
moment generating function of a stationary birth—death—
immigration process

Based on the connectivity and clustering coefficient of nodes in a
network, with higher connectivity suggesting an impending regime
shift

Shifts in fitness-related traits — specifically declines in body size at
either the population or community level — are used to infer
approaching collapse.

Abundance-based measures of stability (e.g. increased variance) and
either spatial or trait-based measures are combined into a single
metric by normalising the trend in each indicator and summing in
across the time series. Thus, producing a composite metric which
should reduce Type I and II error

(Guttal &
Jayaprakash 2008;
Dakos et al. 2012;
Dai et al. 2013;
Kéfi et al. 2014)

Boettiger &
Hastings (2012b)

Hefley et al. (2013)

Seekell er al. (2011)

Dakos & Soler-Toscano
(2016)

Biggs et al. (2009)

Sundstrom et al. (2017)

Carpenter et al. (2014)

(Rietkerk 2004;
Kéfi er al. 2007, 2014;
Deblauwe et al. 2011)

Lade & Gross (2012)

Brett ez al. (2017)

(Tirabassi et al. 2014;
Yin et al. 2016)
(Yin et al. 2016)
(Clements & Ozgul 2016a;
Spanbauer ez al. 2016)

(Drake & Griffen 2010;
Clements & Ozgul 2016a),




