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Constancy Recovery Resistance Dynamical Attractors

variability (or lack thereof) of 
the dynamics of composition 
or structure of the system over
time or space

whether and how fast the system
recovers after a perturbation 

how much the system 
changes after a perturbation

existence or changes between 
attractors/dynamical states 
(alternative stable states or from
non-oscillating to oscillating 
dynamics)

attractor type
trends in variance/autocorrelation

resistance
(eg deviation from reference)
robustness
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•  459 papers reviewed 1900-2018 from 9 ecological journals  
•  empirical and theoretical papers (focusing on communities) 



how do we measure Stability - a review 

Here, we review how stability has been assessed in the eco-
logical literature – theoretical and empirical – since the 1950s.
We recorded the stability metrics used, the variables on which
they were quantified and the perturbations considered. We
show that the evaluation of stability in ecological studies has
been largely limited to using a single stability metric, on ‘sim-
ple’ species-poor systems, at a single organisational scale, in
response to single perturbations. These observations raise a
number of questions and challenges that we summarise in
order to highlight where research is needed.

AN OVERVIEW OF OUR UNDERSTANDING OF

STABILITY

To assess what has been done so far, we reviewed the ecologi-
cal literature and recorded how stability was quantified in
both theoretical and empirical papers. More specifically, we
searched for the terms ecolog* AND stability, ecolog* AND
resilience, ecolog* AND structural stability on the Web of
Science in the period from 1900 to January 2018 in the jour-
nals Ecology, American Naturalist, Oikos, Ecology Letters,
Science, Proceedings of the National Academy of Sciences of
the United States of America (PNAS), Scientific Reports, Nat-
ure and Nature Communications.
This search retrieved 995 articles, from which we removed

studies that did not explicitly measure, quantify or calculate
stability in any form (e.g. review or opinion papers). Our
final database consisted of 459 entries (around 46% of the
initial search). For each paper, we recorded: (1) the type of
study (theoretical, experimental/empirical (hereafter referred
to as ‘empirical’) or both (hereafter referred to as ‘mixed’),
(2) the system size (number of species or model dimension),
(3) the nature (what is perturbed), scale (who is affected:
species, group of species, total community), and type (pulse,
press, stochastic) of the perturbation(s) performed and (4)
the nature (on what variable(s) are the stability metrics
measured), scale (on which scale is the metric measured:
species, group of species, total community) and type of
metric measured. We merged metrics that were named dif-
ferently in different studies despite having the same defini-
tion. The complete list of metrics recorded is summarised in
Table S1.

A proliferation of metrics

The number of metrics used in theoretical and empirical stud-
ies has increased over time as new metrics keep being sug-
gested in the literature – in papers published between 1970
and 1979, for example, there were 13 different metrics used,
while about 34 different ones were used in papers published
since 2010 (Fig. 1a). The vast majority of these metrics has
received little use in the literature, while only a handful have
been used broadly across studies (Fig. 1b). For example, coef-
ficient of variation (CV) and resistance have both been used
in more than 100 papers. The diversity of metrics used hinders
comparisons among studies, since different metrics are not
straightforward to compare. Moreover, the metrics used differ
in theoretical vs. empirical studies – dominant eigenvalue, the
type of attractor (e.g. alternative stable states, dynamics
becoming cyclic), CV and persistence are the most common
metrics used in theoretical studies, whereas resistance and CV
dominate in empirical studies (Table S1). This creates signifi-
cant difficulties in linking theory with experiments and obser-
vations (Donohue et al. 2016).

These observations raise the question of what metrics to
measure, and whether each metric provides complemen-
tary information or whether some of them are redun-
dant. Papers typically quantify one to two metrics at a
time (1.4 metrics on average in our database). This
means that different metrics have rarely been quantified
simultaneously and that we do not know much about
how stability metrics relate to each other.

A focus on ‘simple’ (species-poor) ecological systems

The majority of experimental and theoretical studies identified
in our literature search focused on relatively simple, species-
poor systems. Among the empirical papers studied, 21%
involved systems with < 5 species, and 29% with < 10
(Fig. S2a). Among theoretical studies, 39% studied systems
with < 5 species, while 45% focused on systems with < 10
(Fig. S2b).

Clearly, the studied systems are far less diverse and
complex than most natural systems. This raises the
question of whether our knowledge about the stability

Figure 1 Metrics of stability. (a) Grey bars represent the number of different metrics used in the papers of that decade (e.g. 13 metrics were used in the
papers published between 1970 and 1979). The black line displays the cumulative number of metrics used in the papers until a given year (i.e. the total
number of metrics used in the papers between 1950 and that year). (b) Distribution of the number of times metrics have been used in the studies of our
database (i.e. in how many papers; see Table S1 for a list of stability metrics).

© 2019 John Wiley & Sons Ltd/CNRS
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•  459 papers reviewed 1900-2018 from 9 ecological journals  
•  empirical and theoretical papers (focusing on communities) 
•  34 different metrics used since 2010 
•  some metrics used more than others 
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of simplified systems can be extrapolated to systems
with more realistic levels of complexity.

A bias towards measuring stability at the community scale (i.e. on
aggregated variables)

Stability can be measured at each of the various levels of eco-
logical organisation, at the species level, at the functional
group at the community scale, with aggregated measures such
as total biomass or productivity (Fig. 2iii). In our literature
analysis, we found a significant bias towards quantifying sta-
bility from properties aggregated at the level of the commu-
nity or meta-community (e.g. total biomass or total cover;
59% of studies, Fig. 2iii). Relatively, few studies quantify sta-
bility at finer scales of organisation (i.e. at the level of species
or groups of species). Further, the comparison of stability
measures performed at different organisational levels in the
same system remains poorly studied: 82% of the studies of
our database measure stability at only one scale, 16% perform
measures at two scales and only 2% consider three different
scales when assessing stability.

Because current research focuses on the stability of a
single organisation level at a time, these observations
raise the question of how stability at a given level of
organisation scales to other levels (i.e. how stability
depends on the level of organisation).

A restricted examination of perturbations

The idea of stability is intimately linked with how a system
responds to perturbations. Traditionally, two broad types of
perturbations are distinguished in ecology: press and pulse
(Fig. 2i) (Bender et al. 1984). Press perturbations are defined as
continuous disturbances causing the abundance or density of
species to change permanently, or as long as the perturbation is
present (e.g. species extinctions or sustained fishing pressure).

Pulse perturbations are defined as instantaneous and short-term
disturbances causing a sudden change in species abundances or
densities, such as extreme climatic events or fire events. Next to
these two types of perturbations, the stability of a system can
also be evaluated as its dynamical response to noise (typically
sustained random fluctuations), which can take the form of
either demographic (intrinsic to the biological system) or envi-
ronmental (extrinsic to the system) stochasticity (May 1973;
Turelli 1978).
Interestingly, we found that a significant portion of studies

quantify the stability of ecological systems in the absence of an
explicit perturbation (i.e. the ‘null’ perturbation type in Fig. 3
left). Rather, such studies tend to look at dynamical properties
of the system under different conditions, such as contrasting
levels of species richness or environmental variables (e.g. nutri-
ents, grazing pressure). This includes most of the studies investi-
gating the links between diversity and community or ecosystem
stability (e.g. Yachi & Loreau 1999; McCann 2000; Tilman et al.
2006; Downing et al. 2014), in which ecosystem variability over
time is typically compared across different levels of species rich-
ness. These studies have contributed greatly to the understand-
ing of the links between biodiversity and stability, but it is,
nonetheless, unclear to what extent these results can help us
understand the consequences of biodiversity loss in natural con-
ditions. Indeed, the stability assessed from comparing communi-
ties of different diversity levels might not be equivalent to the
stability of a community following species removal (D!ıaz et al.
2003). For example, potential cascading effects following extinc-
tions are ignored when comparing diversity treatment levels, and
in particular the sequential effects of species loss (i.e. the order in
which species are lost). Zavaleta & Hulvey (2004) showed that a
realistic species loss scenario decreased grassland resistance to
invasions strongly when compared to a random species loss sce-
nario.
In addition, perturbations of different nature (e.g. tempera-

ture, nutrient availability, CO2, light, salinity, rainfall) have
attracted different levels of attention (Fig. 3 right). We, for

Figure 2 Assessing stability in ecological systems requires identifying i) the nature of the perturbation (the stability ‘to what’?) [Pulse, Noise or Press], its
intensity and direction, ii) the scale at which it affects the ecological system [individual species in green, groups of species (e.g. functional or trait-based) in
orange and whole system in blue] and iii) the scale at which the stability metrics is measured (the stability ‘of what’?), which may differ from the scale at
which the perturbation occurs. Stability metrics can be quantified on either each of all species of the system (‘all species’), some species (‘partial’) or at the
level of the whole community (‘aggregated’). The percentages indicate the percentage of studies included in our database. Lines from the perturbation
categories on the left indicate the proportion of studies with this type of perturbation applied on each level of organisation.

© 2019 John Wiley & Sons Ltd/CNRS
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but, which metric(s) describe the overall 
stability of a community? 



multidimensionality of stability 

tionships. That is, there is no general framework that integrates
across the different dimensions of stability.
The primary question about multidimensional ecological stability

is how correlated or independent are the various components of
stability (Box 1)? Few and weak correlations among stability compo-
nents (Box 1a) imply that simultaneous quantification of multiple
components of stability is necessary and suggests that different pro-
cesses and mechanisms could be responsible for different compo-
nents of stability. Alternatively, many strong correlations among
several components of stability (Box 1b, c, d) imply that the effec-
tive dimensionality of ecological stability is low. This makes ecologi-
cal stability less complex than if correlations were weak. Finding
strong correlations (i.e. low effective dimensionality) implies that
similar processes and mechanisms underlie multiple components of
ecological stability and/or that there are causal connections among
components of stability.
A second question about multidimensional stability is whether the
effective dimensionality of stability changes in the face of major
perturbations, such as biodiversity loss. This could be explored, for

example, by simulating the loss of different predator species and
their prey both separately and together (Fig. 1), with a focus
on consumer species conceivably capturing effects most realistically
because species at higher trophic levels tend to suffer higher
extinction rates (Duffy 2003) and exert disproportionately large
effects on the structure and functioning of ecosystems (Paine
1966; Mittelbach et al. 1995; Estes et al. 2011). The loss of differ-
ent functional groups of consumers may also trigger shifts in the
relationships among different components of ecological stability.
For example, empirical studies have shown that predators are key
contributors to ecosystem robustness (Paine 1966; Terborgh et al.
2001; Estes et al. 2011), whereas intermediate consumers such as
grazers can regulate the spatial variability of their prey (Hillebrand
2008).
In this article, we develop the concept of ecological stability in a

multidimensional framework and explore the two key questions
about the interrelationships among different stability measures. As
an example of how this framework can be applied, we conducted a
manipulative field experiment on marine rocky shore communities

Box 1 The dimensionality of ecological stability

?

(a) (b) (c) (d)

(i) (j) (k) (l)

(e) (f) (g) (h)

Four scenarios illustrating a spectrum of possible relationships among three different dimensions of stability; variability (V), resistance (Rs) and
robustness (Rb) are used in this example, though in reality there will often be more than three components: (a, e, i) the three components of stabil-
ity are independent, ecological stability is a relatively complex phenomenon with relatively high effective dimensionality; (b, f, j) two components
of stability are strongly correlated and both independent of the third; (c, g, k) all measures of stability are strongly and positively correlated, ecolog-
ical stability is a relatively simple phenomenon, with low effective dimensionality; (d, h, l) all measures of stability are strongly correlated, but some
of those correlations are negative; ecological stability again has low effective dimensionality. The relationships among the three components of
stability for the four scenarios are illustrated as ellipsoids in multidimensional stability space in (a-d) [(a) spherical, (b) ‘frisbee’-shaped and (c, d)
‘cigar’-shaped], which were constructed using the covariance matrix of stability measures (seeMethods); as sets of pairwise scatterplots in (e-h), with
associated Pearson correlation coefficients (r), and using the relative (to the dominant axis) lengths of ellipsoid semi-axes in (i-l). The relative
length of any ellipsoid semi-axis is proportional to the amount of variation along that axis, meaning that the distribution of relative lengths among
axes defines the dimensionality and shape of the ellipsoid. Similarly, the volume of the ellipsoid describes the total variation in stability, while
changes in ellipsoid orientation indicate shifts in the relative magnitude and/or form of correlations among stability measures. The orientation of
the ellipsoid in (c) is orthogonal to that in (d) (i.e. the angle between the dominant eigenvectors of each ellipsoid is 90º).

© 2013 Blackwell Publishing Ltd/CNRS
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Can we quantify the dimensionality of stability 
based on metric correlations? 

multidimensionality of stability 



•  generated foodwebs with niche model 
•  bioenergetic model with allometric scaling 
•  simulated communities from 5 to100 species 
•  using random parameter distributions  
•  only focused on stable equilibrium solutions 
•  estimated 27 metrics from the literature 
•  measured pairwise rank cross-correlations 

Can we quantify the dimensionality of stability 
based on metric correlations? 
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pair-wise Spearman ranked correlations 

•  biggest difference few species networks 

E.g. 

<CE>: Cascading extinctions 

Rinf: asymptotic resilience 

Is: invariability 

RE: resistance of total biomass to extinctions 

TM: Tolerance to mortality (Structural stability) 

Community size (45-55 species) 
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DRAFT

are lasting disturbances causing the abundances of species to64

be permanently changed, and after which one can evaluate65

how di�erent the post- and pre-perturbed communities are.66

Climatic changes or increases in exploitation of a given species67

are examples of press perturbations. Finally, environmental68

stochasticity (36–38) represents an intermediate case of per-69

turbations, where a community is constantly a�ected by small70

external changes that make it fluctuate around an average71

state. We quantify the stability of simulated communities to72

these perturbations with 27 metrics frequently-used in the73

literature (see Table 1, and Materials and Methods). We then74

explore how these metrics correlate to each other. If metrics75

are found to be uncorrelated, it means that all metrics are76

needed to properly assess the stability of an ecological commu-77

nity. On the contrary, if all metrics are found to be perfectly78

correlated with each other, considering only a single metric79

is enough to assess the stability of an ecological community.80

Thus, by studying the correlations between stability metrics81

we can identify to what extent the di�erent metrics we con-82

sidered provide similar information about the stability of an83

ecological community, or whether they form distinct groups84

that could reflect partly independent stability components.85

(i.e. the dimensionality of community stability). VIR: why86

delete this? isn’t this one of the repeated suggestions of the87

referees, to go from independent component to dimension?88

Are we doing that change? (provided we stress that they are89

an emergent feature)90

Results and Discussion91

Effect of community size on stability metrics’ correlations.92

Community size (i.e. number of species) has been shown to93

play a fundamental role in the stability of ecological networks,94

although it is not entirely clear if it promotes their stability,95

hinders it, (20, 22) or both (21). For example, food web sim-96

ulation studies show that persistence (i.e. fraction of surviving97

species) and population variability were negatively or positively98

correlated depending on the species richness of the community99

(21) Consequently, we start by investigating if the pairwise100

correlations between stability metrics (Table 1) are a�ected by101

community size in our simulated trophic communities. Overall,102

many most pairwise correlations (~44% out of the total 351103

correlation pairs) are not highly a�ected by community size104

(Fig 1.A), and we don’t find any non-monotonic correlation.105

While Some pairwise correlations (~32%) fade as community106

size grows (Fig. 1B), others (~20%) become stronger (Fig. 1C).107

In a few cases the change in the correlation between two met-108

rics can be as strong as to revert its sign when community size109

changes (Fig. 1D), (variation of all pairwise correlations with110

community size is included in Fig. S1). This dependence of111

pairwise correlations on community size is especially important112

strong in small to medium-sized communities up to around 50113

species(i.e. composed of fewer than 50 species). In contrast,114

in species-rich communities (i.e. > 50 species composed of 60115

species or more), correlations remain largely constant; only116

6% of all pairwise correlations change their value when the117

community size further increases (see Fig. S1). Given the118

dependence of pairwise correlations on community size, we119

study how stability metrics correlate across three levels of120

species richness: small (5 to 15 species), medium-sized (45 to121

55 species), and large communities (85 to 95 species). In what122

follows we present the results for medium-size communities in123
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Fig. 1. Examples of changes in Spearman’s fl pairwise correlation between metrics
as a function of community size (i.e. number of species in the community at steady
state). Metrics names are indicated on the panels (see Table 1 in Materials and
Methods for their definitions). A high percentage of pairwise correlations (44%)
remain unchanged irrespective of community size (A). Some metrics are only strongly
correlated in small communities (B), while others are only strongly correlated in larger
communities (C). In few cases ( 3% of pairwise correlations), the pairwise correlations
may change sign when community size changes (D).

can we add in this figure the full names of the metrics - as

the rev also suggest to facilitate the interpretation of all these

acronyms? also on y axis write �Correlation (Spearman s

rho)� - not everyine knows this is correlation, what is the

minimum value on x axis? should we also specify x axis as

Community size (species no)

the main text; the results for small and large communities are 124

shown in the SI. 125

Grouping stability metrics. To investigate if there is any struc- 126

ture in the way metrics are correlated with each other, we 127

build a network of stability metrics (see Materials and Meth- 128

ods) (Fig.2A) in which nodes represent the metrics and links 129

their weighted (unsigned) pairwise correlations. Using an 130

algorithm of community detection based on maximizing mod- 131

ularity (hereafter referred to as ‘modularity algorithm’; see 132

Materials and Methods), we find that the metrics form three 133

distinct groups in such a way that metrics that belong to the 134

same group are more strongly correlated to each other than 135

to metrics outside the group (Fig.2A and Fig. S3). The 136

‘Early Response to Pulse’ group (light green in Fig. 2A) con- 137

tains measures of the initial and short-term deviations of a 138

community from its reference state after a pulse perturbation. 139

The ‘Sensitivities to press’ group (green in Fig. 2A) includes 140

metrics that quantify changes in total and individual species’ 141

biomass between the post- and pre-perturbed communities 142

after a press perturbation. The ‘Safe distance’ group (blue in 143

Fig. 2A) measures how easily systems cross thresholds to new 144

dynamical states and combines the following metrics related 145

to extinction risk: the amount of external pressure before the 146

community experiences an abrupt change, the closeness of the 147

rarest species to extinction, population variability, and sec- 148

ondary extinctions caused by random extinctions. As such, the 149

‘Safe Distance’ group includes stability properties of tolerance, 150

invariability, and extinction cascades. Similar to the ‘Early 151

Response to Pulse’ group that measures average responses of 152

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Domínguez-García et al.
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Fig. 2. A) Network of stability metrics for communities with 45 to 55
species. Nodes represent stability metrics and the thickness of links
reflect their unsigned pairwise Spearman’s fl correlation coefficients.
Node colors distinguish the three groups identified by the modularity
algorithm, with a modularity of Q=0.177 (see Materials and Meth-
ods). Metrics within a group are stronger correlated with each other
than with metrics outside the group. The ’Early response to pulse’
group, in light green, contains the metrics of average initial (MR0)
and transient responses of the community (MAmax, Mtmax).
The ’Sensitivities to press’ group, in green, contains resistance and
sensitivity metrics based on community and species’ responses to
press perturbations. The ’Safe Distance’ group, in blue, contains
metrics of asymptotic dynamics, such as resilience (Rinf , MRinf ),
response to small press perturbations (S, < sij >), tolerance to
mortality increase (T M , < T Mi > and minT Mi), cascading
extinctions (CE, maxCE) as well as responses to environmental
stochasticity (Is). In grey are metrics that the modularity algorithm
was not able to unambiguously place in any group. These metrics
include the initial (R0) and transient responses (Amax, tmax) to
pulse perturbations forming a similar to the ’Early response to pulse’
group but of the most abundant species in the community. B) Similari-
ties among metrics found by hierarchical clustering (see Material and
Methods) when applied to the network of stability metrics for commu-
nities with 45 to 55 species. The dendrogram represents distances
between pairs of metrics. The goodness-of-fit of distances based
on the dendrogram to the distances in the original data (pairwise
correlation) is quantified by the Cophenetic Coefficient (c =0.85).
Metrics are clustered similarly to the grouping of the modularity parti-
tioning, with the noted exception of < RE > bla bla. VD: can you
add to the yellow group in parethesis (average). Also according to
the reviewer this figure should be 2 column wide. this will make the
names of the metrics to be visible.

all species, we also identified an ‘Abundant Species’ Response153

to Pulse’ group (gray in Fig. 2A) that also measures initial154

and transient responses to a pulse perturbation, but focuses on155

the most abundant species and is correlated to the rest of the156

metrics in an idiosyncratic manner depending on community157

size (see SI Text, section S2).158

This emergent grouping highlights the relevance of the159

temporal scale of the metrics as well as the type of pertur-160

bation the metrics refer to. Both groups of ‘Early response161

to pulse’ contain only metrics describing transient behaviour,162

while the ‘Safe distance’ and ‘Sensitivities to press’ contain163

metrics describing long-term (asymptotic) dynamics (although164

this di�erence is weaker in small-sizes communities compared165

to medium-sized and large communities (Fig.S2 and SI Text,166

section S3). Clearly, the ‘Sensitivities to press’ and ‘Early167

response to pulse’ form the two contrasting groups containing168

metrics that refer to press and pulse perturbations respectively.169

On the other hand, metrics in the ‘Safe distance’ refer to both170

types of perturbations. Overall, the fact that the three groups171

of metrics are weakly connected with each other (with an av-172

erage correlation coe�cient of ~0.13 suggests that the metrics173

within a group can be considered as largely relatively inde-174

pendent from metrics in other groups. Therefore, these three175

groups can be interpreted as di�erent stability components176

that reflect the “dimensionality” of the stability of a trophic177

ecological community (26), i.e. the minimum number of ele-178

ments that should be measured in an ecological community to179

fully better accurately? assess its stability.180

Quantifying stability metrics’ (dis)similarity. The modularity181

algorithm provides a global description of how metrics can182

be organized in groups of relatively independent stability183

components, but it does not provide detailed information about184

the degree of (dis)similarity between di�erent metrics. To185

examine this, we use a hierarchical clustering analysis (39, 40). 186

This approach is based on aggregating nodes according to 187

their pairwise correlation (see Materials and Methods). The 188

correlations are used to compute a distance between all pairs 189

of metrics, which is represented in Fig. 2B (and Fig. S3) 190

by means of a dendrogram. The key to interpreting such a 191

dendrogram is to focus on the first “branch” at which any two 192

metrics are joined together; the further away two metrics are 193

from this “common ancestor” the less similar they are. 194

The dendrogram obtained is clearly in good agreement 195

with the groups identified by the modularity algorithm (only 196

one metric, < RE >, represented with a stripped pattern in 197

Fig. 2B, is not placed in the same group by both approaches). 198

This discrepancy is mostly due to the fact that the < RE > 199

metric quantifies the average change in total biomass before 200

and after a random extinction without taking into account 201

the identity of the targeted species. For instance, deleting 202

an apex predator will generally result in small changes in 203

biomass, while deleting a plant could cause major changes. 204

Consequently, as the metric averages a response across all 205

species in the community weakens its correlation to other 206

related metrics (e.g. maxRE) and casts itself as outlier. 207

The dendrogram allows to visualize a more detailed struc- 208

ture, with subgroups of similar metrics within the three groups 209

identified by the modularity algorithm. to change, too much 210

reference to measurements For example the metrics CE, and 211

T E – which measure responses to random extinctions (see 212

Table 1) – are in the same group (in blue) as T M , minT M and 213

< T M > – which measure responses to increases in mortality. 214

Yet these three responses to extinction are more similar to 215

each other than to any other metric in the same group. 216

The hierarchical clustering also reveals connections that 217

may not have been apparent based on the modularity algo- 218

Domínguez-García et al. PNAS | July 26, 2019 | vol. XXX | no. XX | 3
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<CE>: Cascading extinctions 

Rinf: asymptotic resilience 

Is: invariability 

RE: resistance of total biomass to extinctions 

TM: Tolerance to mortality (Structural stability) 
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Fig. 2. A) Network of stability metrics for communities with 45 to 55
species. Nodes represent stability metrics and the thickness of links
reflect their unsigned pairwise Spearman’s fl correlation coefficients.
Node colors distinguish the three groups identified by the modularity
algorithm, with a modularity of Q=0.177 (see Materials and Meth-
ods). Metrics within a group are stronger correlated with each other
than with metrics outside the group. The ’Early response to pulse’
group, in light green, contains the metrics of average initial (MR0)
and transient responses of the community (MAmax, Mtmax).
The ’Sensitivities to press’ group, in green, contains resistance and
sensitivity metrics based on community and species’ responses to
press perturbations. The ’Safe Distance’ group, in blue, contains
metrics of asymptotic dynamics, such as resilience (Rinf , MRinf ),
response to small press perturbations (S, < sij >), tolerance to
mortality increase (T M , < T Mi > and minT Mi), cascading
extinctions (CE, maxCE) as well as responses to environmental
stochasticity (Is). In grey are metrics that the modularity algorithm
was not able to unambiguously place in any group. These metrics
include the initial (R0) and transient responses (Amax, tmax) to
pulse perturbations forming a similar to the ’Early response to pulse’
group but of the most abundant species in the community. B) Similari-
ties among metrics found by hierarchical clustering (see Material and
Methods) when applied to the network of stability metrics for commu-
nities with 45 to 55 species. The dendrogram represents distances
between pairs of metrics. The goodness-of-fit of distances based
on the dendrogram to the distances in the original data (pairwise
correlation) is quantified by the Cophenetic Coefficient (c =0.85).
Metrics are clustered similarly to the grouping of the modularity parti-
tioning, with the noted exception of < RE > bla bla. VD: can you
add to the yellow group in parethesis (average). Also according to
the reviewer this figure should be 2 column wide. this will make the
names of the metrics to be visible.

all species, we also identified an ‘Abundant Species’ Response153

to Pulse’ group (gray in Fig. 2A) that also measures initial154

and transient responses to a pulse perturbation, but focuses on155

the most abundant species and is correlated to the rest of the156

metrics in an idiosyncratic manner depending on community157

size (see SI Text, section S2).158

This emergent grouping highlights the relevance of the159

temporal scale of the metrics as well as the type of pertur-160

bation the metrics refer to. Both groups of ‘Early response161

to pulse’ contain only metrics describing transient behaviour,162

while the ‘Safe distance’ and ‘Sensitivities to press’ contain163

metrics describing long-term (asymptotic) dynamics (although164

this di�erence is weaker in small-sizes communities compared165

to medium-sized and large communities (Fig.S2 and SI Text,166

section S3). Clearly, the ‘Sensitivities to press’ and ‘Early167

response to pulse’ form the two contrasting groups containing168

metrics that refer to press and pulse perturbations respectively.169

On the other hand, metrics in the ‘Safe distance’ refer to both170

types of perturbations. Overall, the fact that the three groups171

of metrics are weakly connected with each other (with an av-172

erage correlation coe�cient of ~0.13 suggests that the metrics173

within a group can be considered as largely relatively inde-174

pendent from metrics in other groups. Therefore, these three175

groups can be interpreted as di�erent stability components176

that reflect the “dimensionality” of the stability of a trophic177

ecological community (26), i.e. the minimum number of ele-178

ments that should be measured in an ecological community to179

fully better accurately? assess its stability.180

Quantifying stability metrics’ (dis)similarity. The modularity181

algorithm provides a global description of how metrics can182

be organized in groups of relatively independent stability183

components, but it does not provide detailed information about184

the degree of (dis)similarity between di�erent metrics. To185

examine this, we use a hierarchical clustering analysis (39, 40). 186

This approach is based on aggregating nodes according to 187

their pairwise correlation (see Materials and Methods). The 188

correlations are used to compute a distance between all pairs 189

of metrics, which is represented in Fig. 2B (and Fig. S3) 190

by means of a dendrogram. The key to interpreting such a 191

dendrogram is to focus on the first “branch” at which any two 192

metrics are joined together; the further away two metrics are 193

from this “common ancestor” the less similar they are. 194

The dendrogram obtained is clearly in good agreement 195

with the groups identified by the modularity algorithm (only 196

one metric, < RE >, represented with a stripped pattern in 197

Fig. 2B, is not placed in the same group by both approaches). 198

This discrepancy is mostly due to the fact that the < RE > 199

metric quantifies the average change in total biomass before 200

and after a random extinction without taking into account 201

the identity of the targeted species. For instance, deleting 202

an apex predator will generally result in small changes in 203

biomass, while deleting a plant could cause major changes. 204

Consequently, as the metric averages a response across all 205

species in the community weakens its correlation to other 206

related metrics (e.g. maxRE) and casts itself as outlier. 207

The dendrogram allows to visualize a more detailed struc- 208

ture, with subgroups of similar metrics within the three groups 209

identified by the modularity algorithm. to change, too much 210

reference to measurements For example the metrics CE, and 211

T E – which measure responses to random extinctions (see 212

Table 1) – are in the same group (in blue) as T M , minT M and 213

< T M > – which measure responses to increases in mortality. 214

Yet these three responses to extinction are more similar to 215

each other than to any other metric in the same group. 216

The hierarchical clustering also reveals connections that 217

may not have been apparent based on the modularity algo- 218
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rithm. A clear example is the subset inside the blue group219

(Fig. 2B) composed by five strongly connected metrics of220

very di�erent nature: dynamical stability (Rinf ), structural221

stability (T M , minT M ), and inverse jacobian (S, < sij >).222

Some of these connections have been previously reported in223

the literature, such as the relationship between ‘resilience’224

and ‘sensitivity’ measured by the inverse jacobian in donor-225

dependent systems (41), but not much is known about the226

others (but see (42)). The strong connection that we find227

between ‘resilience’ (Rinf ) and ‘tolerance’ (T M , minT M ) can228

be intuitively understood by noting that these two metrics229

represent di�erent strategies to estimate the distance to a dy-230

namical threshold, either by directly testing for the intensity231

of the stress that leads to the first extinction (43, 44), our232

definition of ‘tolerance’ (see Table 1 with metrics definitions),233

or indirectly by means of critical slowing down indicators such234

as ‘resilience’ and ‘invariability’ (45).235

Positive correlation among stability metrics. So far, we have236

not considered the sign of the pairwise correlations, since it237

is not relevant to determine to what extent di�erent metrics238

are providing similar information. Nonetheless, this might be239

important to assess stability, because the existence of both240

positive and negative correlations in our network of metrics241

would suggest possible trade-o�s: promoting stability accord-242

ing to one of the metric would only happen at the expense of243

stability according to another metric. In our simulated commu-244

nities, we find that most pairwise correlations in medium-sized245

communities are positive ((90% of all 351 pairs have average246

correlation above 0), while negative correlations are not strong247

(all of them have average correlation above -0.4, see Fig S4).248

This result is in agreement with recent experimental findings249

where multiple positive correlations between di�erent stability250

metrics were found in communities of similar sizes (20, 26)251

(only invasions seemed to be negatively correlated to other252

metrics of stability (26)). The metrics used here may not be253

entirely identical to those used in these experimental studies,254

nonetheless there are clear similarities. For example, we find255

a correlation (fl =0.37) in small communities between popula-256

tion variability (Is) and a measure of resistance (SM) that is257

similar to the one used by (26), and also between Is and the258

number of secondary extinctions (CE) (fl =0.57). We also find259

a correlation between Is and resistance to small press pertur-260

bations – i.e. without extinctions – (S) in small communities261

(fl =0.54) in agreement with (20).262

This predominance of positive correlations implies that if a263

community performs better than a similar community when264

facing a given perturbation – and therefore assessed by a given265

stability metric, it will probably be better o� when facing266

a di�erent perturbation as well and assessed with another267

stability metric. This, however, can also work in the opposite268

way: communities that already have di�culties withstanding a269

given stress according to a given stability metric, will probably270

be more vulnerable to other stresses as well.271

In small sized communities is possible to see negative corre-272

lations between Resistances and Sensitivities (see Fig. S4.A),273

which means that larger changes in individual populations274

happens in a way such that they must compensate accom-275

panied by smaller changes in total aggregated biomass. As276

the community size increases, however, the only negative cor-277

relation that remains is that between the largest deviation278

of a species, during the transient regime, and the time it279
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Fig. 3. A classification of stability metrics according to three axes: the type of
perturbation involved (pulse, press or continuous shocks), the stability group they
are assigned to by the modularity algorithm (Early response to pulse, Safe distance,
and Sensitivities to press) and the four Stability Facets that typically describe stability
properties, each marked with a different colour (Resistance in purple, Attractor in
green, Constancy in yellow and Recovery in red). The color of the different groups of
stability metrics is the same as presented in Fig. 2.

communities where the most populated species rapidly devi- 280

ates103from their original numbers will also, in general, start 281

the recovery of the population earlier, which makes sense if 282

we consider104that the dynamics of a given population should 283

not experiment mayor changes when confronted with a pulse 284

perturbation 285

Mapping stability metrics. Past reviews of stability in ecology 286

have highlighted the multidimensionality of stability and have 287

stressed that metrics found in the literature could be grouped 288

in a few ‘stability facets’ that reflect di�erent aspects of sta- 289

bility (10, 22, 24, 25). There is currently no consensus on the 290

names of these facets; we here refer to them as ‘resistance’ 291

(how di�erent the system is when under a press perturbation 292

compared to the initial situation), ‘attractor’ (the type and 293

number of attractors of the system), ‘constancy’ (how vari- 294

able the system is), and ‘recovery’ (if and how the system 295

recovers from a pulse perturbation). Confronting the results 296

obtained in this study with these stability facets, we map all 297

metrics according to the type of perturbations we applied to 298

the community (pulse, press or environmental stochasticity), 299

the stability component the stability group each metric be- 300

longs to (i.e. ‘Early response to pulse’, ‘Safe distance’ and 301

‘Sensitivity to press’), and the way in which stability has been 302

historically categorized based on the mentioned four facets 303

(Fig. 3). Interestingly, this map reveals that it is not pos- 304

sible to simultaneously capture the three stability groups 305

components with an experiment that involves only one type 306

of perturbation. Transient responses (MR0, Mtmax, MAmax) 307

can only be studied when communities experience a pulse 308

perturbation, while all metrics classified under ’resistance’ and 309

’sensitivity’ of biomass in Table 1 are, by definition, the re- 310

sults of a press experiment. In light of this, one must should 311

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Domínguez-García et al.
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so, which metric(s) to use? 

•  at least 1 metric per group 
 
•  depends on:  
-type of disturbance 
-level of correlation 
-feasible to measure 
 
•  not all correlations clear mathematical link: 
need for assessing latent links (if they exist) 
for clarifying which metric to use 



measuring changes in stability for  
detecting abrupt ecosystem responses 
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catastrophic shifts in ecosystems 
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shallow lake tipping points to eutrophication 

Uhlmann 1980, Developments in Hydrobiology 
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Can we detect tipping points in advance? 

tipping point 

(catastrophic 
bifurcation) 



Dakos et al 2012, Ecology 
Dakos et al 2013, Theor Ecol 

Dakos et al 2010, Theor Ecol 
Wang et al 2012, Nature 

autocorrelation rises 
Dakos et al 2010, Theor Ecol 

Dakos et al 2012, Ecology 

recovery rate decreases 
Dakos et al 2011, Am Nat 

variance increases 
Dakos et al 2012, Ecology 

Dakos et al 2013, Theor Ecol 
 

close to tipping 

systems prior to tipping points slow down 



catastrophe theory and catastrophe flags 

Gilmore 1981 
Thom 1976 
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close to tipping far from tipping leading indicators 
(Early Warnings) 

close
far

tipping point

tipping point indicators 

Scheffer et al 2009, Nature 
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recovery time increases 

tipping point indicators 

Scheffer et al 2009, Nature 
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Dakos et al 2010, Theor Ecol 
Wang et al 2012, Nature 

autocorrelation rises 

variance increases 

close to tipping far from tipping leading indicators 
(Early Warnings) 

close
far

tipping point

recovery time increases 

tipping point indicators 

Scheffer et al 2009, Nature 
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autocorrelation rises 
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tipping point indicators 

Scheffer et al 2009, Nature 



github.com/earlywarningtoolbox 
github.com/spatial-ews/spatialwarnings 
 
 

earlywarnings 

Dakos et al 2012, PLoS One 
Ives & Dakos 2012, Ecosphere 

Boettiger & Hastings 2013, J R Soc Int 
Kéfi et al 2014, PLoS One 

Seekel & Dakos 2015, Ecology & Evolution 

tools for tipping point detection – in time and space 

early-warning-signals.org 



Ultimate aims: 
1.  Rank resilience across 

systems/sites/species 
(hotspots) 

2.  Monitor changes in 
resilience within a system 
(warnings) 



IPCC 2013 
mean temperature 



IPCC 2013 
mean temperature 

WHAT: 
we estimated variability in future temperatures at global 
scale using predictions from climate models 



IPCC 2013 
mean temperature 

WHAT: 
we estimated variability in future temperatures at global 
scale using predictions from climate models 
 
WHY: 
to understand the spatial and temporal distribution of 
temperature variability that can highlight hotspots of 
climate sensitivity/instability in the future 



Bathiany, Dakos, Scheffer, Lenton 2018, Science Advances  

 
fig. S8. Documentation of our time series analysis method. (a) original temperature time series at a single grid 
cell in the North Atlantic (null meridian, 70°N) in MPI-ESM-LR. The blue window shows the 30-year sliding 
window used to detrend the data and remove the annual cycle. (b) Resulting anomaly time series. The window 
marked by the black dashed lines enclosing the years 2055-2084 is the time window used to calculate absolute 
and relative changes of temperature variability (compared to the period 1875-1904 which is not shown). The blue 
100-year sliding window is used to calculate the change in standard deviation over the whole time period 1850-
2100, and to calculate the Kendall τ value of the trend. (c) Resulting time series of standard deviation in this 100-
year window, and the Kendall τ value for the entire period. This time series ends in 2035 because we are plotting 
at the centre of the 100-year window. Red dots in a and b mark the December of each year. The original time 
series starts in 1850, but only the range 1950-2100 is shown for illustration.  

relative change 
1875-1904 2055-2084 

detrended record 

increased temperature variability  
as proxy for hotspots of climate sensitivity 
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year window, and the Kendall τ value for the entire period. This time series ends in 2035 because we are plotting 
at the centre of the 100-year window. Red dots in a and b mark the December of each year. The original time 
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•  temperature output from 37 models from the Coupled 
Model Intercomparison Project 5 (CMIP5) 

increased temperature variability  
as proxy for hotspots of climate sensitivity 
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Relative changes in variability of monthly temperature until 2100 
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Relative changes in variability of monthly temperature until 2100 



(redrawn by the Economist)  

•  Strong CO2 emitters least affected 
•  Poorest countries face highest variability 

Climate injustice 



Stability/Resilience 

Catastrophic shifts 

Ecological dynamics 

•  Stability metrics strongly correlated but unclear their 
mathematical link: (if they exist)this will help clarifying 
which metric to use 

•  Well-developed toolbox for using temporal (and 
spatial) fluctuations to detect tipping points: challenge 
to apply them in practice 

summing up 
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There can be EWS without 
tipping points 

  
Boettiger et al. 2013 

There can be tipping points without 
EWS 

 

theoretical challenge - too generic? 



Clements & Ozgul 2018 

Box 3 Proposed approaches for identifying early warning signals of state shifts in ecological systems

A broad suit of EWSs has been proposed, ranging from simplistic measure of trends in the moments of abundance data to
more complex methods based on maximum likelihood model selection. The vast majority of work thus far has concentrated on
signals derived from CSD. Note: ‘abundance’ may also be substituted with ‘biomass’ (e.g. Carpenter et al. 2011).

Method Data Details References

Trends in statistical
signals

Abundance or spatial Strong temporal trends – typically estimated using a sliding window
approach – in a variety of generic warning signals in the direction
predicted by theory (e.g. increasing variance and autocorrelation)
indicate an approaching collapse. In spatial contexts, trends may be
in spatial variance, spatial skewness or spatial correlations

(Guttal &
Jayaprakash 2008;
Dakos et al. 2012;
Dai et al. 2013;
K!efi et al. 2014)

Model selection using
likelihood ratio tests

Abundance Models representing deteriorating and stable conditions are fit to
data, with model selection used to determine which (deteriorating
or stable) best describes the observed data

Boettiger &
Hastings (2012b)

Across sample variance Abundance across
multiple sites

Estimates the between-survey sample variance across multiple
sampling sites within the same population. Appears to be robust to
significant sampling errors

Hefley et al. (2013)

Conditional
heteroskedasticity

Abundance Conditional heteroskedasticity implies that variance at one time step
is highly related to variance in the proceeding time steps. Thus, as
a tipping point is approached the portion of the time series in the
vicinity of the bifurcation will appear as a cluster of high variability
when compared to areas of the time series away from the
bifurcation point

Seekell et al. (2011)

Measures of reduced
complexity

Abundance or spatial Changes in the randomness of the system are inferred through
changes in the Kolmogorov algorithmic complexity, with reduced
randomness (increased complexity) indicating less white noise in the
system and hence a looming bifurcation

Dakos & Soler-Toscano
(2016)

Spectral density ratio Abundance Spectral density ratio measures the ratio of high- to low-frequency
processes in a time series, with a shift to low frequency-dominated
processes (spectral ‘reddening) indicating an approaching collapse

Biggs et al. (2009)

Fisher information Spatial or abundance Captures patterns in the dynamics of a system from trends in
variables that characterise its condition. Multiple variables are
combined into a single index that can track changes in the dynamic
order of the system

Sundstrom et al. (2017)

Quickset change points Abundance Employs two models [collapse vs. no collapse, as in Boettiger &
Hastings (2012b)] which are updated with each input of new data.
A signal is generated when the likelihood ratio exceeds a predefined
threshold based on the user’s tolerance for false alarms

Carpenter et al. (2014)

Pattern-based spatial
signals

Spatial Changes in the organisation and patchiness of strongly spatial
ecosystems can be indicative of regime shifts, in particular shifts in
patch-size distributions, occurrence of self-organising patterns based
on ‘Turing instability’ and deviation from observed power law
distribution of patch sizes

(Rietkerk 2004;
K!efi et al. 2007, 2014;
Deblauwe et al. 2011)

Generalised modelling Abundance and
structural information

A generalised model is constructed of the system which describes the
structure of the system without specifying specific functional forms,
typically this entails identifying critical system variables (e.g.
abundance) along with processes (e.g. birth rate) or other
information (e.g. mortality is likely to be linear)

Lade & Gross (2012)

Trends in statistical signals
of BDI models

Rate information Extensions of trend-based signals developed by Dakos et al. (2012)
and others, whereby emergent diseases can by forecast by looking
for trends in signals such as the coefficient of variance from the
moment generating function of a stationary birth–death–
immigration process

Brett et al. (2017)

Network-based Abundance and spatial Based on the connectivity and clustering coefficient of nodes in a
network, with higher connectivity suggesting an impending regime
shift

(Tirabassi et al. 2014;
Yin et al. 2016)
(Yin et al. 2016)

Trends in fitness-related
traits

Trait Shifts in fitness-related traits – specifically declines in body size at
either the population or community level – are used to infer
approaching collapse.

(Clements & Ozgul 2016a;
Spanbauer et al. 2016)

Combined signals Abundance and spatial,
abundance and trait

Abundance-based measures of stability (e.g. increased variance) and
either spatial or trait-based measures are combined into a single
metric by normalising the trend in each indicator and summing in
across the time series. Thus, producing a composite metric which
should reduce Type I and II error

(Drake & Griffen 2010;
Clements & Ozgul 2016a)
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