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Motivation: Noisy Channel Coding



Noisy Channel Coding

Encoder
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Error Correction
m bits are subject to noise modelled by N(y∣x), find encoder e and
decoder d to maximize probability p(N,m) of retrievingm bits
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Noisy Channel Coding (continued)

▸▸ Fixed number of bitsm and noise model N gives bilinear
optimization

p(N,m) = max
(e,d)

1
2m
∑
x,y,i

N(y∣x)d(i∣y)e(x∣i)

s.t. ∑
x
e(x∣i) = 1, 0 ≤ e(x∣i) ≤ 1

∑
i
d(i∣y) = 1, 0 ≤ d(i∣y) ≤ 1

▸▸ Approximating p(N,m) up to multiplicative factor better than
(1 − e−1) is NP-hard in the worst case [Barman & Fawzi 18]
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Noisy Channel Coding (continued)

▸▸ For the linear program [Hayashi 09, Polyanski et al. 10]

lp(N,m) = max
(r,p)

1
2m
∑
x,y

N(y∣x)rxy

s.t. ∑
x
rxy ≤ 1, ∑

x
px = k

rxy ≤ px, 0 ≤ rxy,px ≤ 1

we have the approximation [Barman & Fawzi 18]

p(N,m) ≤ lp(N,m) ≤ 1
1 − e−1

⋅ p(N,m)

▸▸ Polynomial (1 − e−1)-multiplicative approximation algorithms
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Quantum Noisy Channel Coding

▸▸ Main question: Similar results for quantum error correction?
[Matthews 12, Leung & Matthews 15]

Encoder

Quantum 
Information

Quantum 
Information

Decoder

Quantum 
Noise

Quantum Error Correction

Find encoder E and decoder D to maximize quantum probability
F(N ,m) of retrievingm qubits
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Quantum Noisy Channel Coding (continued)

▸▸ Near-term quantum devices are of intermediate scale and noisy

Φn

E N D

Φn

▸▸ Tailor-made approximation algorithms for encoder/ decoder?

Optimize Quantum Information Processing

Develop mathematical toolbox rooted in optimization theory
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Quantum Noisy Channel Coding (continued)

Φn

E N D

Φn

▸▸ m qubits with quantum noise modelN leads to quantum
channel fidelity

F(N ,n) ∶=max F (Φn, ( (D ○N ○ E)⊗ I)(Φn))

s.t. E ,D quantum operations
(+ physical constraints)

with fidelity F(ρ,σ) ∶= ∥√ρ
√
σ∥21 .

9 / 24



Quantum Noisy Channel Coding (continued)

▸▸ For d ∶= dim(N ) becomes bilinear optimization

F(N ,n) =max d ⋅Tr[(NĀ→B (ΦĀĀ)⊗ΦAB̄)(∑
i∈I

piE iA→Ā ⊗D
i
B→B̄) (ΦAA ⊗ΦBB) ]

s.t. E i,Di quantum operations, pi ≥ 0, ∑
i∈I

pi = 1

▸▸ To characterize is set SEPN (AĀ∣BB̄) of separable channels

∑
i∈I

piE iA→Ā ⊗D
i
B→B̄

⇒ strong hardness for quantum separability [Barak et al. 12]

▸▸ Lower bounds on figure of merit via, e.g., physical intuition or
iterative see-sawmethods⇒ upper bounds?
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i∈I

piE iA→Ā ⊗D
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De Finetti Theorems



Monogamous Entanglement

▸▸ Quantum states ρAB is called k-shareable if

ρAB1⋯Bk
with ρABj

= ρAB ∀j ∈ [k]

⇒ characterizes separable states [Stoermer 69, Doherty et al. 02]

De Finetti for Quantum States

For states ρABk
1
= πBk

1
(ρABk

1
)we have that [Christandl et al. 07]

min
{pi,σi}

∥ρAB −∑
i
piσiA ⊗ σiB∥

1

≤
d2B
k
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k-shareable Quantum Channels

De Finetti for Quantum Channels

For channelsNABk
1→ĀB̄k

1
(πBk

1
(⋅)) = πB̄k

1
(NABk

1→ĀB̄k
1
(⋅))with

TrĀ [NABk
1→ĀB̄k

1
(⋅)] = TrĀ [NABk

1→ĀB̄k
1
( 1A
dA
⊗TrA [⋅])]

TrB̄k
[NABk

1→ĀB̄k
1
(⋅)] = TrB̄k

[NABk
1→ĀB̄k

1
(TrBk[⋅]⊗

1Bk

dB
)]

we have that (cf. asymptotic bounds [Fuchs et al. 04])

min
{pi,E i,Di}

∥NAB→ĀB̄ −∑
i∈I

piE iA→Ā ⊗D
i
B→B̄∥

◇
≤
√

poly(dAdĀdBdB̄)
k

⇒ characterizes separable quantum channels
13 / 24



Proof Ideas

▸▸ Choi-Jamiolkowski isomorphism gives Choi constraints for states
that represent channels

▸▸ Directly de Finetti theorems with linear constraints (add-on)

▸▸ Classical de Finetti + informationally complete
measurements— relative to quantum side information

Sum-of-Squares Hierarchies

[Lasserre 00, Parrilo 03] via information-theoretic approach based on
entropy inequalities [Brandão & Harrow 16]

▸▸ Various extensions possible—basic open questions for
classical/quantum settings
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Application: Noisy Channel Coding



Outer Bound Approximations

▸▸ Efficiently computable semi-definite program outer bounds
sdpk(N ,m) ∶=max dĀdB ⋅Tr [(NĀ→B1 (ΦĀĀ)⊗ΦAB̄1)WAĀB1B̄1]

s.t. WAĀ(BB̄)k1
⪰ 0, Tr [WAĀ(BB̄)k1

] = 1

WAĀ(BB̄)k1
= π(BB̄)k1 (WAĀ(BB̄)k1

)

WA(BB̄)k1
= 1A
2m
⊗W(BB̄)k1

WAĀ(BB̄)k−11 Bk
= WAĀ(BB̄)k−11

⊗
1Bk
dB

PPT(Ak1 ∶ Bk
1) ⪰ 0

with approximation guarantee to quantum channel fidelity

∣spdk(N ,m) − F(N ,m)∣ ≤
√

poly(dAdĀdBdB̄)
k

▸▸ Previous work: [Matthews 12, Leung & Matthews 15, Tomamichel
et al. 16, Wang et al. 16/17] and [Rozpedek et al. 18, Kaur et al. 18]
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Certifying Optimality of Relaxations

▸▸ Compare classical linear program relaxation [Barman & Fawzi 18]

p(N,m) ≤ lp(N,m) ≤ 1
1 − e−1

⋅ p(N,m)

▸▸ No finite approximation guarantee for F(N ,m) ≤ sdpk(N ,m)

Rank Loop Conditions

If for k ∈ N there exists l ∈ N such that

rank (WAĀ(BB̄)k1
) ≤max{rank (WAĀ(BB̄)l1

) , rank (W(BB̄)k−l1
)}

then we have equality sdpk(N ,m) = F(N ,m)

▸▸ Proof via [Navascués et al. 09]
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Numerical Example Relaxations

▸▸ Uniform noise corresponds to qubit depolarizing channel

Depp ∶ ρ↦ p ⋅ 1B
2
+ (1 − p) ⋅ ρ with p ∈ [0,4/3].

Question

What is the optimal code for reliably storingm = 1 qubit in noisy 5
qubit quantummemory, p (Dep⊗5p , 1) = ?

▸▸ Analytical [Bennett et al. 96] as well as see-saw [Reimpell &
Werner 05] lower bounds, our work upper bounds

p (Dep⊗5p , 1) ≤ sdpk (Dep⊗5p , 1)
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Numerical Example Relaxations (continued)

▸▸ Exploiting symmetries for analytical dimension reduction for
first level sdp1 (Dep⊗5p , 1) [Wang et al. 16/17] gives
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[Reimpell & Werner 05] lower bounds

▸▸ p ∈ [0,4/3] [Reimpell & Werner 05] optimal, p ∈ [0,0.18] room
for improved codes

19 / 24



Numerical Example Relaxations (continued)

▸▸ Exploiting symmetries for analytical dimension reduction for
first level sdp1 (Dep⊗5p , 1) [Wang et al. 16/17] gives

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4/3

depolarizing probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
h

a
n

n
e

l 
fi
d

e
lit

y

n=5

trivial E&D

five bit code

0 0.5 1 4/3

parameter p of the depolarizing channel

0

0.2

0.4

0.6

0.8

1

ch
an

n
el

 f
id

el
it

y

[Reimpell & Werner 05] lower bounds

▸▸ p ∈ [0,4/3] [Reimpell & Werner 05] optimal, p ∈ [0,0.18] room
for improved codes

19 / 24



20 / 24

Conclusion



Conclusion

▸▸ Quantum noisy channel coding (one-shot) via de Finetti
theorem for quantum channels

▸▸ Optimization theory tools to numerically study quantum error
correction for practical settings
▸▸ Variations possible, e.g., classical communication assistance,
physical constraints

Open Questions

▸▸ Numerics via dimension reduction? Polynomial size + symdpoly
[Rosset]?
▸▸ Settings with provably good quantummeta-converse?

▸▸ Optimal quantum de Finetti theorems: dimension dependence,
minimal conditions?
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Add-on: De Finetti with Linear Constraints



Quantum De Finetti Theorem with Linear Constraints

Let ρABk
1
be a quantum state, ΛA→CA , ΓB→CB linear maps, and XCA , YCB

operators such that for π ∈Sk

ππBk
1
(ρABk

1
) = ρABk

1
symmetric with respect to A

ΛA→CA(ρABk
1
) = XCA ⊗ ρBk

1
linear constraint on A

ΓBk→CB(ρBn
1
) = ρBk−1

1
⊗ YCB linear constraint on B.

Then, we have

∥ρAB −∑
i∈I

piσiA ⊗ωi
B∥1
≤

√
d4B(dB + 1)2 log dA

k

with probabilities {pi}i∈I and quantum states σiA,ω
i
B such that ∀i ∈ I

ΛA→CA (σ
i
A) = XCA and ΓB→CB (ω

i
B) = YCB .
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Application: Bilinear Optimization

De Finetti with linear constraints gives outer hierarchy for programs
of the bilinear form (cf. [Huber et al. 18])

max Tr[H(D⊗ E)]
s.t. D ∈ SD, E ∈ SE

where H is a matrix and SD and SE are positive semi-definite
representable sets of the form

SD = ΠA→D(S+A ∩AA) and SE = ΠB→E(S+B ∩AB)

with ΠA→D,ΠB→E linear maps, S+A ,S+B the set of density operators, and
AA,AB affine subspaces of matrices.
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