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TOWARDS QUANTUM COMPUTERS
➢ State of the art: well-characterized qubits with well-controlled interactions 

and long coherence times.
➢ Leading candidate systems: trapped ions, superconducting qubits, linear 

optics, silicon-based qubits.

➢ There are errors in the physical realization of quantum computation.

➢ Need error correction to protect our quantum computation.

➢ Fault-tolerant quantum computation (FTQC) [Shor'96] provides a framework to overcome this difficulty.

➢ It allows reliable quantum computation when the physical error rate is below a certain threshold value.



FAULT-TOLERANT QUANTUM COMPUTATION

➢ The model of FTQC allows stabilizer operations
➢ Preparation of stabilizer states
➢ Implementation of Clifford unitaries
➢ Pauli measurements

➢ Clifford group: easy to implement, cheap

➢ The Gottesman–Knill theorem: A quantum circuit comprised of only 
Clifford gates can be simulated efficiently on a classical computer. Thus 
such circuit confers no quantum computational advantage.

➢ However, the additional non-stabilizer (or magic) resources promote 
Clifford to universal QC.



MOTIVATIONS
➢ Magic states are necessary resource to achieve universal quantum computation.
➢ Magic states can allow non-Clifford gates.

➢ QC via magic state distillation is the leading model for experimentally realizing FTQC.
➢ A central problem in quantum information is to determine the minimal 

physical resources that are required for quantum computational speed-up.
➢ Better understand the resource cost of killer apps of quantum computing.

Gate injection [Zhou, Leung, Chuang'00]

Factoring a 1024-bit number [Kutin’06] 3132 qubits T gates

Simulating 50 spins (PF) [Childs et al.'18] 50 qubits T gates

Simulating FeMoco [Reiher et al. 16] 111 qubits T gates



MAGIC QUANTUM RESOURCES

Stabilizer states: States of the form Examples: computational basis states, 

maximally entangled states.

[Bravyi, Kitaev’05]: the Clifford group operations combined 

with magic states preparation are sufficient for UQC.

Q: What are magic quantum resources?

Stabilizer operations: preparation/measurement 

in the computational basis + Clifford unitaries.

A: Non-stabilizer states or non-stabilizer 
operations.

Examples

• Qubit states that are not from



MAIN MESSAGE

➢ Further development of the resource theory of magic states 

➢ Introduce the resource theory of quantum channels. 

➢ New magic measures to quantify the magic of both quantum states 

and quantum channels.

➢ Applications in operational tasks

➢ Magic state distillation and magic state generation via channels.

➢ Magic cost of quantum operations and gate synthesis.

➢ Classical simulation of noisy quantum circuits.

➢ Ideas from quantum resource theories play important roles.



Resource theory of magic states

& its applications



RESOURCE THEORY OF MAGIC STATES

Magic Entanglement

Free states Stabilizer states Separable states

Free operations Stabilizer operations LOCC operations

Key task Distilling magic state (e.g. T state) Entanglement distillation

➢ The resource theory of magic was first proposed by Veitch, Mousavian, Gottesman, 

and Emerson in 2014.

➢ As the quantum resource theory developed fast in the past five years, it makes 

sense to further develop the resource theory of magic states.

➢ How to quantify the magic of quantum states？

➢ What is the limit of magic state manipulation (e.g., magic state distillation)？

➢ What is the ability of quantum channels to generate or consume magic resources？

➢ Our work uses information-theoretic approaches to answer the above questions.



STABILIZER FORMALISM

➢ For a prime number d, we define the unitary boost and shift operators X,Z in 

terms of their action on the computational basis:

➢ The Heisenberg-Weyl operators

where

➢ Phase-space point operators

➢ For each point in the discrete phase space, the value of the discrete 

Wigner representation of a state at this point is given by



DISCRETE WIGNER FUNCTION

➢Phase space distributions in continuous variable quantum information: 

characteristic function and Wigner function.

➢Here, we focus on a similar formalism in finite dimensions.

➢ Discrete Wigner function for qudits (in odd dimensions)

➢ A quasi-probability distribution.

➢ Discrete Hudson's theorem: a pure state has positive

representation if and only if it is a stabilizer state.

➢ Information complete: 
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Example: Wigner function of the qutrit state



MAGIC MEASURES

➢ Logarithmic negativity (mana) [Veitch et al.'14]:

➢ Wigner trace norm and Wigner spectral norm

➢ Example: for with Wigner function

➢ Relative entropy of magic [Veitch et al.’14]
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➢Recall that states with positive W. function are bound magic states [Veitch et 

al.'12] (similar to PPT states in entanglement theory).

➢We may borrow ideas from the resource theory of NPT entangled states.



MAGIC MEASURE: THAUMA

➢Google: How to quantify magic? There’s a universally accepted 
unit of what it takes to pull a rabbit out of a hat, called thauma
(Greek for “wonder” or “marvel”).

➢ We introduce free sub-states with non-positive mana:

➢ We introduce magic measures based on divergence between a state and .

➢ A new family of magic measures called thauma

➢ The generalized divergence             is any function of a quantum state ρ and a 

positive semi-definite operator σ that obeys data processing.



INSPIRATION

Entanglement Magic

Logarithmic negativity (mana) [VW02, Ple05] [VMGE'14]

Rel. entropy of ent. (magic) [VMGE'14]

Rains bound (thauma) [Rains'01] [WWS'18]

Max-Rains bound (max-thauma) [WD'16] [WWS'18]

Max-relative entropy

[Datta'09]

➢The family of thauma measures can be seen as the analog of the Rains bound in the 
resource theory of magic states.

➢ Inspired by the idea behind the Rains bound: sub-normalized states with non-positive log 

negativity. (It leads to better upper bounds for ent. Distillation and quantum communication 

[Rains'01; Tomamichel, Wilde, Winter'17; Wang and Duan'16], etc).



DISTILLING MAGIC FROM STATES

Stab operations
Magic state distillation

• Rate estimation for finite-copy and asymptotic regime:
• One-shot distillable T magic
• Distillable T magic

Gate injection

• Goal: transform a large number of noisy magic states into a small number 

of high-quality key magic states.

• MSD + gate injection is a popular approach to perform universal QC.

Key question: what is the maximum number of T states we can 

distill from given states approximately？



ESTMITAING MAGIC STATE DISTILLATION
For the qutrit T state , we have

➢ Motivations for distilling qutrit T states [Dawkins, Howard, PRL’15]
➢ Establish the fundamental limits of magic state distillation.
➢ The one-shot estimation can be computed efficiently via SDP.
➢ The asymptotic estimation can be computed efficiently via convex optimization.
➢ The approach also applies to distilling some other basic magic states.



MAIN IDEA
➢ Step 1: Estimate the maximum overlap between the n copies of T states and the 

set of free states. (Note that this quantity is also essential for the resource 
theories of entanglement and coherence.)

➢ Based on the min-thauma
➢ We have
➢ Then, for any state in W, it holds that 
➢ Furthermore, we prove the additivity of min-thauma, which implies that

➢ Step 2: Use the data processing inequality to establish the one-shot bound. 

➢ The asymptotic bound utilizes the quantum Stein’s lemma.



A FUNDAMENTAL DIFFERENCE BETWEEN RESOURCE 
THEORIES OF MAGIC AND ENTANGLEMENT

➢ In entanglement theory, the states with maximum entanglement measure (e.g., 
log negativity) can be transformed to each other at a rate equal to one.

➢ However, this is not the case in the resource theory of magic.

➢ The Strange state and the Norrell state each has maximum mana (log negativity)

and is thus the most costly resource to simulate on a classical computer (Pashayan et al.’15).

➢ Also answers an open question in [Veitch, Mousavian, Gottesman, Emerson’14].

➢ Using the thauma measures, we prove that it is not possible to transform the 
Norrell state to the Strange state at a rate equal to one, even asymptotically:



Quantifying the magic of 

quantum channels



FREE OPERATIONS BEYOND STABILIZER OPERATIONS

➢ Completely Positive-Wigner-Preserving operations (CPWP)

➢ Intuition: A quantum circuit consisting of an initial quantum state, unitary 

evolutions, and measurements, each having non-negative Wigner 

functions, can be classically simulated.

➢ A Hermiticity-preserving linear map Π is called completely positive 

Wigner preserving (CPWP) if

Magic Entanglement (PPT)

Free states States with positive W func. PPT states

Free operations ? PPT operations (completely preserve PPT)

➢ The completely stabilizer-preserving operations 

(CSPO) were introduced in [Seddon, Campbell'19].

Stabilizer 

operations

CPWP

CSPO



CPWP OPERATIONS

Theorem The following about CPWP operations are equivalent:

• N is CPWP;

• The discrete Wigner function of the Choi matrix of N is non-negative;

• is non-negative for all u and v (a classical channel).

➢ The equivalence between 2 and 3 was previously proved by (Mari,Eisert’12).

➢ Why we need Completely Positive-Wigner-Preserving operations？

➢ Wigner function of a channel N (Mari, Eisert’12):

➢ The qutrit Werner-Holevo channel [Werner, Holevo’02]

erasures the magic if we do not consider ancillary system:

This channel is Positive-Wigner-Preserving but it can indeed generate magic.

➢ Another motivation: this class of channels can be classically simulated efficiently.



MANA OF A QUANTUM CHANNEL

➢ To quantify the magic of a quantum channel, we introduce the 

mana of a quantum channel            :           

➢ The mana of a quantum channel has many desirable properties

1. Reduction to states: for ,

2. Faithfulness

3. Additivity under tensor product:

4. Sub-additivity:

5. Monotonicity under CPWP operations.

6. Quantifies the classical simulation cost of the channel (in the next part).



THAUMA OF A QUANTUM CHANNEL

• Properties

1. Reduction to states: for , we have

2. Monotonicity under CPWP operations

3. Faithfulness

• Provide us the opportunity to explore the magic of quantum channels 

by choosing specific divergence.

• Generalized thauma of a quantum channel

where the optimization is over CP maps.

• Key idea: channel divergence



MAX-THAUMA OF A QUANTUM CHANNEL
➢ A useful measure in this family is the max-thauma

where the minimum is taken with respect to all completely positive maps and

is the max-divergence of channels.

➢ The max-thauma of a quantum channel has additional desirable properties

1. Additivity under tensor product

2. Sub-additivity

3. Efficiently computable via semidefinite programming



DISTILLING MAGIC VIA CHANNELS
The most general protocol for distilling magic from a quantum channel:

For the above procedure, the rate of magic distillation satisfies that

Moreover, the asymptotic magic generating capacity is bounded by



DISTILLING MAGIC VIA CHANNELS (PROOF)

1. Assume that the final state is

2. Applying the data processing inequality for the max-relative entropy,

3. The subadditivity of max-thauma allows us to estimate the power of sequential protocols:

4. Based on the above two inequalities, we have



GATE COST IN QC ARCHITECTURES

• Clifford group: easy to implement, cheap

• T gate (expensive)

• Clifford + T Universal QC.

Quantum Circuits

How many T gates are required 

to implement certain quantum 

circuits under FTQC?

What about the case with noise?

• Our focus: How much magic is needed to perform noisy/noiseless quantum 

circuits when stabilizer operations or their beyond are free？



MAGIC COST OF A QUANTUM CHANNEL

For any qudit quantum channel , the number of channels required to 

implement it is bounded from below as follows:

• Applications to the gate synthesis of elementary gates.

• To implement a controlled-controlled-X gate, at least four T gates are required.

• The approaches in [Howard, Campbell'16] focused on noiseless quantum 

circuits. However, our lower bound can be applied to NISQ devices.

• We also have preliminary study on the magic cost of approximate gate 

simulation (gate synthesis with error tolerance). 



MAGIC COST UNDER NOISE

➢One common noise model in quantum information 

processing is the depolarizing channel:

➢ Lower bound on the number of noisy T gates 

to implement a noisy CCX gate under the 

depolarizing noise (p=0.01).

➢ The gate cost will significantly increase if 

error is beyond some threshold.

➢ It will be interesting to explore the magic cost 

under other noise models.



CLASSICAL SIMULATION OF QUANTUM CIRCUITS

Quantum Circuits

➢Strong simulation: given z, compute p(z).

➢Weak simulation: sample a bit string from the distribution p.

➢Recent extension of the Gottesman-Knill theorem [Bravyi, Gosset'16].

➢Apply Monte Carlo sampling techniques to a quasiprobability representation 

[Pashayan, Wallman, Bartlett'15].

➢Most algorithms have exponential scaling in the number of qubits.

➢However, the above approaches cannot be directly applied for noisy quantum circuits.



CLASSICAL SIMULATION OF NOISY CIRCUITS.
➢ Inspiration from [PWB15]: we could estimate the outcome probabilities of quantum 

circuits using quasi-probabilities.

➢ Our contribution: extend the PWB algorithm to noisy quantum circuits.

...

Our goal is to estimate 

➢ We can reformulate both the state preparation and the measurement as quantum 

channels. W.l.o.g., we could assume

1. Sample the initial phase point according to the distribution

2. For l=1,...L, we sample a phase point according to the the conditional 

distribution

3. Output the estimate

➢ This gives an unbiased estimate of the output probability since



COMPARISON WITH OTHER METHODS

➢ Cost of samples for accuracy and success probability .

➢ [Seddon, Campbell'19] introduced classical algorithms to 

simulate noisy quantum circuits with cost

for accuracy and success probability .

➢ Our approach can always outperform their first one since

➢ Our approach can outperform the second one for the unitary

Lower bound for the cost 

via the approaches in 

[Seddon, Campbell'19]

Cost of our approach



AN EXAMPLE
➢ Estimate the magic of fundamental noisy quantum circuits.

➢Red solid line: Lower bound on the classical simulation cost.

➢Blue dashed line: Upper bound on the magic generating capacity.



Summary and outlook



SUMMARY Stabilizer quantum 

computation

Resource theory of 

magic for quantum 

states and channels

Efficiently computable 

magic measures

Magic state distillation Gate synthesis Classical simulation

Explore fundamental 

properties of magic states



OUTLOOK

➢ Generalize our approach to study the resource theory of non-Gaussianity.

➢ Further study on the magic of multi-qubit quantum operations, in particular, 

the ability of magic state distillation and classical simulation.

See [Seddon, Campbell'19] for recent progresses.

➢ Magic state conversion (like the majorization of pure states in ent. theory)？
For example, can we find necessary and/or sufficient condition for pure 

magic state conversion under (stabilizer operations/PWP operations)？

➢ Better understand the catalysis-assisted magic state manipulation [Campbell'11].

➢ Exact and approximate unitary synthesis with a focus on important and 

fundamental circuits (see [Beverland et al.' 19] for recent progresses).



QUESTION ON STABILIZER RANK

[Garcia, Markov, Cross'12; Bravyi, Smith, Smolin'16]

That stab rank of is the smallest integer k such that

• This can be understood as the magic version of Schmidt rank in entanglement theory.

• The Gottesman-Knill theorem can be extended to simulation of an arbitrary 

state undergoing a Clifford circuit with runtime proportional to .

• If quantum computers are more powerful than classical ones, we then should 

expect to scale exponentially with n.

• Open question [Bravyi, Smith, Smolin’15]: can we find an exponential lower bound for the 

stabilizer rank？

Stabilizer states.

Stabilizer rank

Recent progress can be found in [Bravyi et al.'2018].



Thank you for your attention!

See arXiv:1903.04483 & 1812.10145 for further details.



BOUNDS FOR MAGIC STATE DISTILLATION

[WWS'18] For the qutrit T state , we have

• Establish the fundamental limits of magic state distillation.
• The estimation can be computed efficiently via convex optimization.
• Proof strategy

1. Prove the maximum overlap between and is
2. Apply the hypothesis testing and data processing inequality

3. Minimize over 
4. Apply the Quantum Stein's Lemma to obtain the asymptotic bound

(use the min-thauma)

Also indicates that the 

stabilizer fidelity of T 

state is multiplicative.


