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U

Worth asking,
"How effectively can these molecular switches switch?”

o

T — T —

But photoisomers are small, quantum, and far from equilibrium.

\

Headway seems to require assumptions,
some of which can be distasteful.
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Theorem

Evaluate resource-theory theorems on the photoisomer. —» Corollary
Theorem
Theorem
Lemma

Bound the switching probability, and characterize coherence’s role in the switching.

NYH and Limmer, arXiv:1811.06551 (2018).
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-Electronic degree of freedom
-Effective qubit

-Rotational coordinate /T

-Nuclear degree of freedom
Heavy, slow Trans

180°

Hahn and Stock, J. Phys. Chem. (2000 and 2002).
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Quick review: Thermodynamic resource theories
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o Literature: Lieb and Yngvason, Amer. Math. Soc. 45, 5 (1998).

Janzing et al., Int. J. Theor. Phys. 39, 12 (2000).
Brandao et al., Phys. Rev. Lett. 111, 250404 (2013).

o How to specify a system: %7, (p, H)

/ T K Hamiltonian

Hilbert space  Density operator

1
o Agent given access to bathat f=——
L

e_ﬂHB
o Free states: thermal relative to f —» = , Hy
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Free operations

 Thermal operations

o Tend to thermalize states

o Each free operation consists of | et
SIMPLE

STEPS

T—

1) Draw any free state from the bath.
2) Perform any unitary that conserves the total energy.

3) Discard a subsystem.




Free operations




Free operations




Free operations




Free operations




Free operations

& (paH) 2 ( U

« [UsHi 1 =0

[
H+Hy,=H® 1)+ (1 ® Hp)




Free operations

& (paH) 2 ( U

« [UsHi 1 =0

[
H+Hy,=H® 1)+ (1 ® Hp)

~First law of
thermodynamics




Free operations

. (p,H) (Tra<U UT>,

« [UsHi 1 =0

[
H+Hy,=H® 1)+ (1 ® Hp)

~First law of
thermodynamics




Free operations

. (p,H) - (Tra<U UT>, H+HB—Ha)

« [UsHi 1 =0

[
H+Hy,=H® 1)+ (1 ® Hp)

~First law of
thermodynamics




Modeling the photoisomer in the resource theory

NYH and Limmer, arXiv:1811.06551 (2018).




Modeling the photoisomer in the resource theory

o Hilbert space: 7

mol




Modeling the photoisomer in the resource theory

« Hilbertspace: 7. - = # ... @ ¥




Modeling the photoisomer in the resource theory

« Hilbertspace: 7. - = # ... @ ¥

o Hamiltonian: H_, =




Modeling the photoisomer in the resource theory

« Hilbertspace: 7. - = # ... @ ¥

o Hamiltonian: H_, =




Modeling the photoisomer in the resource theory

« Hilbertspace: 7. - = # ... @ ¥

T

o Hamiltonian: Hm01=[ do
0




Modeling the photoisomer in the resource theory

» Hilbert space: 7,

T fz =
» Hamiltonian: Hmol = [ d(p Helec(qﬁ) X |§0><§0 | = 1elec X ﬁ
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« How large a probability weight can the final state have on the lower level?
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Second law in conventional thermodynamics

» (an a system transition from one state to another spontaneously?

o Compare free energies. —» F=E — TS
» Do they satisfy (the appropriate manifestation of) the second law? —» AF <0

o Setting: equilibrium, large-system limit, implicit averaging
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« Does any free operation map (p, H) to (o, H')?

o Must check a family of inequalities —» “second laws"
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o One subfamily of inequalities governs the state’s energy diagonal.
(p,H) = (6, H)?

lH
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Pd_;

o Another subfamily governs the coherences.

« We wantto bound a diagonal element.
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(p,H) = (0,H)?

KZ
elec(qp) X | §0><(P | + 1elec ® o

l |

Effective 4-level system:

(2 nuclear states)

\/\/ X (2 electronic states)
E

¥

»=0 =
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Applying the second laws of thermodynamics to the photoisomer

Coherence theorem

A density operator can be broken into modes, each defined by a gap.
The modes transform independently under thermal operations.

Marvian and Spekkens, Phys. Rev.A90, 062110 (2014).
Lostaglio et al., Phys. Rev. X 5,021001 (2015).
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Second laws of thermodynamics for the energy diagonal

e Janzing etal., Int. J. Theor. Phys. 39, 12 (2000).
Horodecki and Oppenheim, Nat. Comm. 4, 2059 (2013).

» Mathematical toolkit: d-majorization

How to check whether (p, H) = (o, H) for free

« Rescale each probability with an inverse Boltzmann factor.

r = 7 ePEu

Srgl R

Informational resource  Energetic resource

o Order the rescaled probabilities from greatest to least.

I elEr > 2 o = v, ePtd

o Plot partial sums.
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Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

r1+ro+ry3=1-

e Gibbs-rescaled
Lorenz curve

o Geometric representation of

the energy diagonal’s
thermodynamic value =00
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Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

o Plotthe (p,H) and (o, H) curves on the same plot.

o Theorem: (p, H) — (o, H) itand only if the (p, H) curve lies, everywhere,
above or on the (o, H) curve.

Encodes a bunch of inequalities




Apply the second laws of thermodynamics
to the photoisomer.

NYH and Limmer, arXiv:1811.06551 (2018).
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Strateqgy

o Forany state p to which the laser can excite the molecule,
four parameters specify the final state.
o Plug into the second laws for the energy diagonal.
o Solve for the greatest s for which the p curve lies above/on the o curve.
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Takeaways

o We've derived fundamental thermodynamic limitations
on the molecule's switching probability

« When the laseris poor (as in some realistic settings),
the resource-theory bound constrains the yield tightly.

o We can understand the bound through energetic and informational resources.

o Using a Lindblad model, we can find a parameter regime
in which the resource-theory bound is saturated.

« Electronic energy coherences can't help.
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(1) Model of the molecule’s rotational degree of freedom as a_quantum clock

T

Loads of papers, including recently, including
about thermodynamic resource theories

!

About energy —
conjugate to time —
measured by clocks

 Upshots

(A) Natural realization of a quantum clock

(B) Resource-theoretic model for a (dissipative Landau-Zener) transition
prevalent in chemistry and condensed matter
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More applications of resource-theory results to the photoisomer

(2) Extraction of work from coherences

(3) Quantification of the post-isomerization electronic energy coherences

(4) Etc.
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Theorem

Corollary
» We've accrued many abstract resource-theory results. »  Theorem
Theorem
Lemma

o Let'sapply them to answer preexisting questions about chemistry, condensed matter,
high-energy physics, ...

e Why should anyone outside the resource-theory community care about resource theories?
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* NYH, "Toward physical realizations of thermodynamic resource theories,” | .., 3
Springer Eds. Durham and Rickles (2015/2017). 4

* Proposals of experiments designed to realize resource-theory results
e Lorch, Bruder, Brunner, and Hofer, Q. Sci. and Tech. 3, 035014 (2018).

* Holmes, Weidt, Jennings, Anders, and Mintert, Quantum 3, 124 (2019).

See also
 Alhambra, Lostaglio, and Perry, arXiv:1807.07974 (2018).

e Pusuluk, Farrow, Deliduman, Burnett, and Vedral, Proc. R. Soc. A474, 20180037 (2018).
Chin and Huh, arXiv:1807.11187 (2018). «— BosonSampling
Song, Huang, Ling, and Yung, arXiv:1806.00715 (2018). <— Neutrino oscillations
Cipolla and Landi, arXiv:1808.01224 (2018). «— Spin-boson model
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 Contribute value to the broader scientific community.
* Answer its open questions.

 Apply our abstract theorems to real physical systems.

Potential settings

e Exciton transport in films made from quantum dots
 Photovoltaics

e Proton transport in molecular systems
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 Contribute value to the broader scientific community.
* Answer its open questions.

 Apply our abstract theorems to real physical systems.

Potential settings

e Exciton transport in films made from quantum dots
 Photovoltaics
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Recap
NYH and Limmer, arXiv:1811.06551 (2018).

* Thermodynamic resource theories
e How to model your favorite system

 "Second laws" of thermodynamics

e Results

» Modeled the photoisomer in a resource theory
 Bounded the photoisomerization probability, using second laws

e Opportunity ' -




Thanks for your time!

NYH and Limmer, arXiv:1811.06551 (2018).
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» Known from resource theory: Can extract work from coherences between degenerate energy levels
without changing the populations

B 4. G

atfps b
c* | b* ps

Pa

o Skrzypczyk, Short, and Popescu, arXiv:1302.2811 (2013).
Kwon et al. PRL120, 150602 (2018).
Korzekwa et al., NJP 18, 023045 (2016).
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Extraction of work from coherence D[g E]

Physical intuition

o Coherent state has more purity —» more predictability —»
more informational resource

o Szilard'’s engine: can use information to turn heat into work

k— Szilard, Zeit. F. Phys. 53, 11-12 (1929).
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Extraction of work from coherence D[g E]

Strategy

 Follow Kwon et al. PRL120, 150602 (2018). —>
Exhibits an example 2-qubit system
from whose coherences work can be extracted

o Show that, in principle, such a state can be constructed from photoisomers.
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« Kwon etal. PRL120, 150602 (2018).
+ E,

o System of 2 identical qubits:

s

o General form of 2-qubit pure state:

Pk B S P E ik D B Bl ok P [ HS B )

o Conditions under which work can be extracted from coherence

(i) The equal-energy terms have equal prefactors: \/P—+ = /P+- -

(i) The greatest Gibbs-rescaled probability is p..— -
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o 2isomers close together in small, symmetric structure

o Occupy a totally anti/symmetric state

2=

o Interactvia Heisenberg coupling, @ - &, atverylowtemperature —»

» By end of photoisomerization, they drop to the ground, antisymmetric state.

%n %, (1), 8_(n) — | B_(n), 8, (1))
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o Theisomers decouple quickly.
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