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Informal Introduction

Aim: to make an inference about a quantum device (in this talk,
the measurement):

?

x ∈ [1, . . .m]

?

y ∈ [1, . . . n]

Given:

I a set of data generated by the device (in this talk, the
probability distributions {px} on the outcomes {y}, that is
[px ]y := p(y |x))

I some prior information about the state space S



Part I: Range Inversion

How much can probability distributions {px} tell us about the
measurement that generated them?



Measurement Range

Any system of any linear physical theory specifies a state space S.

Any measurement M acts as a linear transformation from the
state space S to the probability space.

For any state ρx ∈ S, px := Mρx is a probability distribution over
the outcomes of M := {πy}.

For example in quantum theory:

[px ]y := Tr [ρπy ]

The range MS of measurement M is the set of all probability
distributions that M can generate upon the input of any state.



Range Inversion

Theorem (M. D., Buscemi, Bisio, Tosini, arXiv:1812.08470)

For any informationally complete measurement M, the range MS
identifies M up to gauge symmetries.

Gauge symmetry: any linear transformation L such that LS = S.

Disclaimer: our results are general, but in this talk we assume
informational complete measurements to avoid technicalities.



Range Inversion for Qubit Measurements

Qubit gauge symmetries: (anti)–unitaries.

Corollary (M. D., Brandsen, Buscemi, et al., PRL 118 (’17))

For any informationally complete qubit measurement M, the range
MS identifies M up to (anti)–unitaries.

For qubits, range inversion identifies the measurement up to a
choice of the reference frame, which is the optimum achievable in
general by a data–driven approach.



Range of qubit measurements

Problem: the previous theorem guarantees that range inversion is
possible, but does not provide an explicit construction.

Theorem (M. D., Brandsen, Buscemi, et al., PRL 118 (’17))

For (hyper)–spherical state space S, the measurement range MS is
the (hyper)–ellipsoid of all probability distributions p such that

(p− t)TQ+(p− t) ≤ 1, and (1− QQ+)(p− t) = 0,

where

Qx ,y =
1

2
Tr[πxπy ]− 1

4
Tr[πx ] Tr[πy ], and tx =

1

2
Tr[πx ].



Algorithmic Representation of Range Inversion

Measurement range R

Range inversion

The theoretician computes the inverse of R

Measurement M up to gauge symmetries
(invariances of the state space S)



Part II: Data–driven Inference

Given a set {px} of probability distributions, what measurement
range should be inferred?



Example: bit and qubit systems

Prior information about state-space: S is a (hyper)–sphere

Observed distributions: {px}.

R2

R1

R̂

p1
p2

p3

p4

p5

p6

p7

Range R1: not compatible with {px}
Range R2: compatible with {px}, but not minimum volume

Range R̂: compatible with {px} and minimum volume



Data-driven Inference

Why volume? The inference must not change under linear
transformations, and that is all we care about in linear theories.

Why minimal? We want to infer the measurement that explains
the probability distributions {px} and as little else as possible.

For given state space S, what is the least committal measurement
M̂ consistent with a given set {px} of probability distributions?

Definition (Data-driven inference of measurements)

We introduce ddi as the algorithm that, upon the input of {px},
outputs the least committal measurement range M̂S compatible
with {px}, that is

ddi ({px}|S) := argmin
M

{px}⊆MS

vol (MS) S.

If many state spaces S’s are possible, take the minimum over S’s.



Example: classical trit system

Prior information about state-space: S is a simplex

Observed distributions: {px}.

p1

p2

p3 p4

p5

p6

R

R̂1

R̂2

Range R: compatible with {px}, but not minimum volume

Ranges R̂1 and R̂1: compatible with {px} and minimum volume



Uniqueness of Data-Driven Inference

Theorem (M. D., Buscemi, Bisio, Tosini, arXiv:1812.08470)

The output of ddi({px}|S) is a singleton for any set {px} of
probability distributions if and only if S is a (hyper)-sphere.

Foundational digression: if we postulate the uniqueness of the
inference as an epistemic principle, we recover the elementary
systems of classical and quantum theories.

This rules out commonly considered general probabilistic theories,
such as the sqit (or square bit), for which the state space is a
square.



Machine Learning of Quantum Measurements

Data–driven inference can be regarded as an algorithm for the
machine learning of quantum measurements.

Theorem (M.D., Ho, Buscemi, Scarani, arXiv:1905.04895)

For (hyper)–spherical state space S, the map ddi represents a
convex programming problem.

Connection with John’s theory of minimum volume enclosing
ellipsoids (MVEE).



Algorithmic Representation of Data-Driven Inference

Outcome distributions {px}
Some prior information

about state space S

Data-driven inference

The theoretician computes ddi({px}|S)

Minimum-volume range R̂
compatible with {px}

Range inversion

The theoretician computes the inverse of R̂

Least committal M̂
consistent with {px}



Part III: Observational Completeness

What set S of states should be fed into measurement M if we
require that data–driven inference returns the range of
measurement M?



Data-Driven Reconstruction

Suppose the set {px} of probability distributions is generated by
asympthotically many runs of the following experiment:

1. upon the input of x , preparing a state ρx ∈ S of a system with
state space S

2. measuring it with a measurement M and collecting input y

{ρx}

x ∈ [1, . . .m]

{πy}

y ∈ [1, . . . n]

For example, in quantum theory [px ]y = Tr [ρxπy ].



Observational completeness of states

Data–driven inference returns the least committal range, which
may or may not coincide with the range of the actual measurement
used in the experiment.

What set of states S := {ρx} should be prepared in order for the
data-driven inference of {px} to coincide with the range MS?

Definition (Observational completeness)

A set S of states is observationally complete (OC) for
measurement M if and only if applying the map ddi to the set MS
of probability distributions returns the range MS, that is

ddi (MS|S) = {MS} .



Characterization of Observational Completeness

Remark: the observational completeness of a set S of states
depends on measurement M.

Problem: can we have a measurement independent
characterization of observationally complete sets of states?

Theorem (M.D., Buscemi, Bisio, Tosini, arXiv:1812.08470)

A set S of states is observationally complete for any
informationally complete measurement if and only if the minimum
volume linear transformation of the state space S that encloses S
is the state space S itself, that is

ddi (S|S) = {S} .

Remark: the map ddi has been extended by linearity from the
probability space to the entire linear space.



Example: Observationally Complete Set of Qubit States

Prior information about state–space: S is a (hyper)-sphere

Set S of states: regular simplex

S = ddi(S|S)

S

S is OC since the state–space S coincides with ddi(S|S), and

S is IC since its linear span is the entire linear space



Example: Observationally Incomplete Set of Qubit States

Prior information about state–space: S is a (hyper)-sphere

Set S of states: irregular simplex

ddi(S|S)

S

S

S is not OC since the state–space S differs from ddi(S|S), but

S is IC since its linear span is the entire linear space



Informational Completeness

A set S of states is informationally complete if and only if it
allows for the tomographic reconstruction of any measurement,
that is, its linear span is the entire linear space.

Corollary (M.D., Buscemi, Bisio, Tosini, arXiv:1812.08470)

Informational completenes is necessary but not sufficient for a
set of states S to be observationally complete for any
informationally complete measurement.



Characterization of Observational Completeness for Qubit

Theorem (M.D., Ho, Buscemi, Scarani, arXiv:1905.04895)

A set S of qubit states is observationally complete for any
informationally complete measurement if and only if S support a
spherical 2-design.

A set S := {ρx} of states supports a spherical t-design if and
only if there exists a probability distribution p such that the
ensemble {px , ρx} is undistinguishable from the uniform
distribution on the sphere given t copies, that is∑

x

pxρ
⊗t
x =

∫
ψ⊗tdψ,

where dψ is the uniform measure on the sphere.



SIC and MUBS as Minimal Cardinality OCs

A set S of states is symmetric informationally complete if and
only if it is a regular symplex.

Corollary (M.D., Buscemi, Bisio, Tosini, arXiv:1812.08470)

For (hyper)-spherical state space S, the unique minimal cardinality
OC set of states is the symmetric informationally complete set.

A qubit set S of states is a mutual unbiased bases if and only if
it is a regular octahedron.

Corollary (M.D., Ho, Buscemi, Scarani, arXiv:1905.04895)

For qubit state space S, the unique minimal cardinality OC set of
bases are the mutually unbiased bases.



Algorithmic Representation of Data-Driven Reconstruction

Measurement M

Observational completeness

The experimentalist feeds in M a set S of states which is OC for M

Outcome distributions {px} = MS

Data-driven inference

The theoretician computes ddi({px}|S)

Minimum-volume range R̂ compatible with {px}

Range inversion

The theoretician computes the inverse of R̂

Measurement M up to gauge symmetries



Summary and Outlook

1. Range inversion The measurement range MS identifies
measurement M up to gauge symmetries
I For qubit systems, gauge symmetries are (anti)–unitaries
I Closed–form range inversion for (hyper)–spherical state space

2. Data–driven inference Given a set {px} of probability
distributions, outputs the least committal range consistent
with {px}
I Unique if and only if the state space is (hyper)–spherical
I Convex programming for (hyper)–spherical state space

3. Observational completeness A set S of states produces MS
if and only if it is observationally complete.
I Characterization of observational completeness
I Closed–form characterization in terms of spherical 2-designs

for (hyper)–spherical state space

4. Work in progress: Data–driven majorization A
data–driven approach to simulability.
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