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Remark

Note: The title does not contain the phrase “resource theory”

But: The talk is pertinent to the topic of this workshop

Because: it concerns a norm which plays a key role in

• The resource theory of quantum channels

• It applies to any resource theory of channels which involves

channels acting on states on an infinite-dimensional Hilbert 

space

• It provides the proper metric to measure the performance 

of the task of channel simulation for such channels
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How fast do infinite-dimensional quantum systems evolve?

Do entropies in infinite-dimensions satisfy continuity bounds?

Consider a closed system, governed by a time-independent             

(1) e.g. 

Questions

Hamiltonian

(Q) Is there a continuous function

as

uniformly in the initial state 

such that

satisfying

(1) 

(2) 

If so, what are the convergence rates?
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Relevance of the Question

• Of fundamental interest

• Of importance in the study of Quantum Speed Limits
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Quantum Speed Limits

• Quantum Speed Limits provide bounds on 

• What is the minimum time          taken by a quantum system 

to evolve from a given initial state to a prescribed final state 

(or class of final states) ?

• They have many applications: e.g. in quantum control, 

quantum communication, metrology,….. 
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How fast do infinite-dimensional quantum systems evolve?

Question (1)

(Q) Is there a continuous function

as

uniformly in the initial state 

such that

satisfying

(1) 

Which in the context of closed quantum systems can be 

phrased as follows:

• Let us first ask the above question for 

closed finite-dimensional quantum systems.
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The answer is simple for finite-dimensional systems:

(A) Closed finite-dimensional systems evolve linearly in time! 

Evolution of finite-dimensional systems

as&

(finite-dimensional systems)

uniformly in 
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e.g. Consider the quantum harmonic oscillator

Infinite-dimensional Quantum System

energy eigenfunctions:energy eigenvalues:

• arbitrarily fast evolution!

Choose

(scaled) Hamiltonian:

Note: for such a choice, 

• culprit : high energy states

for time
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Infinite-dimensional quantum systems 

We consider the time evolution of both closed & open 

infinite-dimensional quantum systems

Closed quantum systems Open quantum systems

• Attenuator channels

• Amplifier channels

• Quantum Boltzmann eqn.

• Quantum Brownian motion

• Models from quantum 

optics

• Systems governed by 

Hamiltonians of the form

Examples:

• etc.

Single-mode Bosonic quantum-limited attenuator channel
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Mathematical Framework that we employ is that of

Quantum Dynamical Semigroups (QDS) 

A QDS describes its evolution under the so-called Markovian 

approximation, which is valid in the weak coupling limit.

environment

system

S

E

• Closed quantum system : QDS Unitary group

• Open quantum system:

(since time evolution is unitary)
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In the Schrodinger picture:

one-parameter family of bounded linear, CPTP operators 

on the Banach space of trace class operators 

Quantum Dynamical Semigroups (QDS)   

(the identity operator)

(the semigroup property)

In the Heisenberg picture:

one-parameter family of bounded linear, CP operators on 

: adjoint of      w.r.t. the Hilbert-Schmidt inner product.

(unital)
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Dynamics of closed quantum systems

QDSs reduces to one-parameter unitary groups

e.g.:

(instead of              )

Henceforth consider: QDS acting on a Banach space

• Generator of the QDS:

e.g.:

http://www.cam.ac.uk/


Notions of continuity for semigroups

A QDS

Uniformly continuous: if

Strongly continuous: if for all 

if and only if the generator      is bounded

the convergence is linear in for all

acting on a Banach spacewith generator

i.e.

i.e.
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Notions of continuity for semigroups contd.

(since     is bounded)

Proof of the Claim: for a uniformly continuous QDS

Finite-dimensional open quantum systems evolve linearly in time.
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Strongly continuous QDSs

• Generator     is unbounded

• All we know is that

• No information about convergence rates

• There does not exist a uniform bound linear in 

Our Aim 

• Analytically richer case

To find rates of convergence for strongly continuous QDSs 

• Includes all the examples mentioned previously

(unbounded generators)
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To study convergence rates for strongly continuous QDSs

• We need a suitable norm on the space of quantum channels

a linear CPTP map, i.e., a quantum channel 

• Commonly used norm: Diamond norm

Or more generally,

on the space of real linear combinations of quantum channels

e.g.

i.e. on the space of Hermiticity-preserving maps

For a Hermiticity-preserving map
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To study convergence rates for strongly continuous QDSs

• is useful for the analysis of the continuity of channel 

capacities in finite dimensions [Leung & Smith]

(classical capacities)

• Note: for 2 quantum channels

Diamond norm:
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e.g. Attenuator channel 

Unsuitability of the diamond norm when the underlying 

Hilbert space       is infinite-dimensional

attenuation parameter

• defined uniquely through its action on a coherent state

• For (time-dependent attenuation parameter)

• Let strongly continuous QDS

• But for any 

• All attenuators are a maximum distance (=2) from each 

other w.r.t. no matter how close their 

attenuation  parameters are !
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• What does this imply?

• It implies that the diamond norm is too strong

a distance measure to capture the dynamics of the  

QDS

• To capture its dynamics & that of general infinite-dimensional

systems a weaker distance measure is needed

for any 
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Remedy: Consider instead Energy-Constrained Diamond norms

[Winter], [Shirokov], [Pirandola]“ECD-norms”

(typically the Hamiltonian) (spectrum)

For a Hermiticity-preserving map acting on

Rationale: [Winter ‘17]

• To realize the maximal distance 

one needs to probe them with highly energetic states.

• But in most communications settings with such channels, 

there is an energy constraint on the input states. 

• Hence, it is natural to put an energy constraint!

• In the limit one gets the usual

http://www.cam.ac.uk/


Remedy: Consider instead Energy-Constrained Diamond norms

[Winter], [Shirikov], [Pirandola]“ECD-norms”

(typically the Hamiltonian) (spectrum)

In terms of 

as

ECD-norms, for attenuator channels: [Winter]

For a Hermiticity-preserving map acting on

Compare with:

asEquivalently,

(semigroup property)
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as

Note however: no information about rate of convergence

Our Aim: to make a refined analysis of convergence rates
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Outline of the rest 

• To do this: introduce a generalized family of ECD norms

• State our Main Results concerning convergence rates for

• (I) Closed quantum systems 

• (II) Open quantum systems

• (III) Quantum Speed limits

• Key mathematical ingredient of the proofs

• Address Question (2) : continuity bounds of entropies

Aim (1): To make a  refined analysis of convergence rates 

of strongly continuous QDSs
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Outline of the rest 

• To do this: introduce a generalized family of ECD norms

• State our Main Results concerning convergence rates for

• (I) Closed quantum systems 

• (II) Open quantum systems

• (III) Quantum Speed limits

• Key mathematical ingredient of the proofs

• Address Question (2) : continuity bounds of entropies

Aim (1): To make a  refined analysis of convergence rates 

of strongly continuous QDSs
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To find rates of convergence for such strongly continuous QDSs 

• We introduce a generalized family of ECD norms labelled 

by a parameter  

it reduces to the usual ECD norm• For

: a Hermiticity-preserving map  acting on

Studying the entire family of                        leads to a more 

refined analysis of convergence rates of QDSs
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Properties of 

is a norm for Hermiticity-preserving maps

is non-decreasing and concave:      

for

(1)

(2)

(3) For

& in the limit one recovers the usual diamond norm:

For

(1), (2), & a host of other 

properties were found by

Shirokov & Winter

Etc. ………….
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Operational interpretation of

Minimum probability of 

error in inferring whether 

the channel is

• In binary hypothesis testing between quantum channels

• You are given a quantum channel & told it is 

• You need to determine which one it is!

(energy constraint)
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Outline of the rest 

• To do this: introduce a generalized family of ECD norms

• State our Main Results concerning convergence rates for

• (I) Closed quantum systems 

• (II) Open quantum systems

• (III) Quantum Speed limits

• Key mathematical ingredient of the proofs

• Address Question (2) : continuity bounds of entropies

Aim (1): To make a  refined analysis of convergence rates 

of strongly continuous QDSs
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Consider the evolution of density operators:

with

Theorem 2:  Let then for

In particular, for

….(a)

….(b)

(compare with  (a))

Main Results (I): Dynamics of Closed Quantum Systems contd. 

• Winter proved [2017]: For

http://www.cam.ac.uk/


[Winter ‘17]

[Becker, D ‘19]

Comparison of results
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Outline of the rest 

• To do this: introduce a generalized family of ECD norms

• State our Main Results concerning convergence rates for

• (I) Closed quantum systems 

• (II) Open quantum systems

• (III) Quantum Speed limits

• Key mathematical ingredient of the proofs

• Address Question (2) : continuity bounds of entropies

Aim (1): To make a  refined analysis of convergence rates 

of strongly continuous QDSs
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Main Results (II): Dynamics of Open Quantum Systems

• infinite-dimensional open quantum systems 

[Davies ‘77]

GKLS-type form 

(Gorini, Kossakowski, 

Lindblad, Sudarshan)

In particular,

self-adjoint but unbounded Lindblad-type operators

(results in unitary dynamics) (result in dissipative dynamics)

• s.t. adjoint semigroup            (Heisenberg pic.) has a generator         

• governed by strongly continuous QDS (Schrodinger pic.)     

with

http://www.cam.ac.uk/


Main Results (II): Dynamics of Open Quantum Systems

Relative boundedness: for positive operators

is relatively    -bounded if &

A notion of smallness of one operator w.r.t another

• To state our results, we need to introduce:

http://www.cam.ac.uk/


Main Results (II): Dynamics of Open Quantum Systems 

1.  If     is relatively     -bounded 

e.g. for the QDS               :

(number operator)

Theorem 3 [Open systems]: 

Lindblad-type operators;

: Self-adjoint operator (e.g. Hamiltonian)

Assumptions: governed by a strongly continuous QDS of GKLS-type form 

http://www.cam.ac.uk/


Attenuator channel           with attenuation parameter 

• Action on coherent states:

• Its generator:

• The generator of the adjoint semigroup

• Comparing with the GKLS-type form

we see that (number operator)

• No unitary dynamics; evolution entirely dissipative

So     is relatively     -bounded  & 

http://www.cam.ac.uk/


It provides a refinement of the asymptotic result: [Winter ‘17]

In particular, for 

as

Attenuator channel            with attenuation parameter 

Theorem 3 2.  If     is relatively     -bounded 

http://www.cam.ac.uk/


Main Results (II): Dynamics of Open Quantum Systems 

Theorem 3 [Open systems] contd.: 

2.   If     is relatively   -bounded 

small dissipative perturbation of the Hamiltonian dynamics

e.g. for quantum Brownian motion

Under the same assumptions as before:

Theorem 3 applies to various examples

http://www.cam.ac.uk/


Outline of the rest 

• To do this: introduce a generalized family of ECD norms

• State our Main Results concerning convergence rates for

• (I) Closed quantum systems 

• (II) Open quantum systems

• (III) Quantum Speed limits

• Key mathematical ingredient of the proofs

• Address Question (2) : continuity bounds of entropies

Aim (1): To make a  refined analysis of convergence rates 

of strongly continuous QDSs
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Quantum Speed Limits

Previously known: 

For closed quantum systems there is a sharp bound on the

[Mandelstam & Tamm ‘91], [Levitin & Toffoli ‘09]

energy of the initial state

energy variance of the initial state

over which i.e.

minimum time

orthogonal
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Main Results (III) Quantum Speed Limits

with relative Bures angle 

Let                 : initial state with

The minimal time needed for it to evolve to a state 

Let                  : initial state to the Schrodinger eqn., with

The minimal time needed for it to evolve to a state 

with angle 

Theorem 4 [Closed systems]

(a)

(b)
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Main Results (III) Quantum Speed Limits

with relative Bures angle 

Let      : initial state with purity                       for which 

The minimal time needed for it to evolve to a state 

Theorem 5 [Open systems]: 

(b) with purity

(a)

Lindblad-type operators;

: Hamiltonian

(governed by a strongly continuous QDS    

of GKLS form) 

s.t. is relatively     -bounded 
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For any QDS acting on a Banach space there

exist Favard spaces,

Key mathematical ingredient of the proofs: Favard spaces

How does the energy constraint arise?

• Favard spaces can be equivalently described in terms of 

the resolvent of the generator       of the QDS

Key Lemma:

http://www.cam.ac.uk/


Interlude
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• Do entropies in infinite-dimensions satisfy continuity bounds ?

• If so, what are the convergence rates?

Let us now move onto the second question:

Continuity of entropies in infinite dimensions(2)

http://www.cam.ac.uk/


von Neumann entropy:

: binary entropy

• Audenaert-Fannes inequality:

• For infinite-dimensional spaces, continuity fails dramatically 

In finite dimensions, the entropies satisfy continuity bounds

If

then

e.g. Let

Continuity of entropies
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infinite-dimensional Hilbert space

is not continuous & is unbounded in every neighbourhood!! 

Entropies of infinite-dimensional quantum systems

is infinite

-ball in trace distance

for which

How can one prove continuity bounds for the entropy 

if the entropy is discontinuous?

then

Continuity bounds hold under additional assumptions!
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Let         : Hamiltonian, such that

& satisfies:

The Gibbs’ Hypothesis :

exists

For any

with                 s.t.

Entropies of infinite-dimensional quantum systems

Denote

It is well-known that the Gibbs state

the von Neumann entropy among all states    s.t.

maximizes
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Entropies of infinite-dimensional quantum systems

For                      s.t.Theorem [Winter ‘15] :

energy constraint& both

with      satisfying the Gibbs’ hypothesis,

[Shirokov]

To get a more refined/explicit bound, one needs to determine 

the high-energy asymptotics of Gibbs states

as
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Theorem 6: under the assumptions of the previous theorem &   

[Becker, D]

Main Results (IV): High energy asymptotics of entropy of Gibbs 

states

Corollary:

Compare with: 

(more quantitative/explicit bound)

Logarithmic divergence!

[Winter ‘17]

e.g. If                                holds &                            

(logarithmic divergence)
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• Fact:  For the case of a quantum harmonic oscillator

we can explicitly evaluate the high energy asymptotics

of the Gibbs state & this yields:

• Hence,                  shows that the logarithmic divergence of 

the entropy is not a special feature of              but is

universal for many classes of Hamiltonians

• Technical tool: Weyl’s law 

Theorem 6
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Main Technical Ingredient: Weyl’s Law

• It concerns the quantity: 

the number of eigenvalues of     that are at most 

of energy     (counted with multiplicities).

• gives an asymptotic description of                for  certain 

classes of operators in the limit of high energies

• & shows that this distribution is universal
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Theorem 6: under the assumptions of the previous theorem &   

Main Results (IV): High energy asymptotics of entropy of Gibbs 

states

Consider 2 auxiliary functions: 

existsis the assumption that

&

Weyl’s Law ensures that these 2 functions have a universal asymptotic 

behavior for a large classes of operators as
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Similar bounds holds for other types of entropies & for 

capacities too [Becker &D], [Winter], [Shirokov]

Corollary :
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Summary

• We improved previously known bounds on the dynamics of 

closed quantum systems & obtained, for the first time,

bounds on the dynamics of open quantum systems.

• Since the generators of such QDSs are unbounded, bounds 

on the dynamics need to  be considered in norms weaker 

than the commonly used diamond norm

• We introduced a family of                             to obtain a 

more refined picture of quantum evolution.

Dynamics resulting from strongly continuous QDSs 

Two issues concerning infinite-dimensional quantum systems:

• Technical tool: Favard spaces

(1)

• Applications: Quantum speed limits
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Summary contd.

• Studied the high energy asymptotics of the entropy of 

Gibbs states

• This allowed us to make previously known continuity 

bounds [Winter ‘17] on entropies (& on capacities 

[Shirokov ‘17]) more quantitative in the asymptotic 

regime of small distances between states.

(2):

• Technical tool: Weyl’s Law

http://www.cam.ac.uk/


Thank you for your attention!

Thanks to Simon Becker

arXiv:1810.00863  (to appear in CMP)

Thanks to Andreas Winter

This work was entirely inspired by his paper arXiv:1712.10267

Energy-constrained diamond norm with applications to the 

uniform continuity of continuous variable channel capacities

arXiv:1712.10267arXiv:1712.10267

arXiv:1712.10267
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