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Note: The title does not contain the phrase “resource theory”

But: The talk is pertinent to the topic of this workshop

Because: it concerns a norm which plays a key role in

* The resource theory of quantum channels

It applies to any resource theory of channels which involves
channels acting on states on an infinite-dimensional Hilbert
space

It provides the proper metric to measure the performance
of the task of channel simulation for such channels


http://www.cam.ac.uk/

EE UNIVERSITY OF

<% CAMBRIDGE Questions

(1) How fast do infinite-dimensional quantum systems evolve?

(2) Do entropies in infinite-dimensions satisfy continuity bounds?

If so, what are the convergence rates?

(1) e.g.
Consider a closed system, governed by a time-independent

Hamiltonian H ; Schréodinger’s eqn. zw(t) - Hw(t);
Y(t) = e Hiy(0) (h=1)
(Q) Is there a continuous function c(t) satisfying

ep(t) — (0)|| < e(t) suchthat c(t) O ast O

uniformly in the initial state 1(0)7
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Relevance of the Question

 Of fundamental interest

« Of importance in the study of Quantum Speed Limits
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 What is the minimum time ¢min taken by a quantum system
to evolve from a given initial state to a prescribed final state
(or class of final states) ?

» Quantum Speed Limits provide bounds on fmin

« They have many applications: e.g. in quantum control,
quantum communication, metrology,.....
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(1) How fast do infinite-dimensional quantum systems evolve?

Which in the context of closed quantum systems can be
phrased as follows:

(Q) Is there a continuous function c(t) satisfying
|20(t) — ¥(0)]| < e(t) such that c(t) 0 astlO

uniformly in the initial state ©(0)7

« Let us first ask the above question for
closed finite-dimensional quantum systems.
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Evolution of finite-dimensional systems

The answer is simple for finite-dimensional systems:

Y(t) = e~ (0)

[p(t) = Y(O)|| = || [y se~isHy(0)ds||
< [|[Hv(0)][t
< ||H]t |H|| < o

(finite-dimensional systems)

() — ()] <c(t) = |[H||t &c(t) L0 as t10
uniformly in 7/(0)

(A) Closed finite-dimensional systems evolve linearly in time!
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e.g. Consider the quantum harmonic oscillator
Hosc =a*a+1/2
(scaled) Hamiltonian: H =a"a = N,
energy eigenvalues: A, = n, energy eigenfunctions: ¥n
Choose  4)(0) = (¢ + ¢0)/V2
Y(t) = e H(0) = (e7""pp + o)/ V2

[1h(t) = ¥(0)]] =

—1i1tn

€ SOn_‘Pn|
e—iw_1| :\/§ m

Note: for such a choice, ¢t — 0 as n — o0

Sl Sl

» arbitrarily fast evolution! < culprit : high energy states
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We consider the time evolution of both closed & open
infinite-dimensional quantum systems

Examples:

Closed quantum systems Open quantum systems

« Attenuator channels

« Amplifier channels

* Quantum Boltzmann eqn.

 Quantum Brownian motion

* Models from quantum
optics

+ etc.

» Systems governed by
Hamiltonians of the form

H=-A+V

Single-mode Bosonic quantum-limited attenuator channel
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Mathematical Framework that we employ is that of

Quantum Dynamical Semigroups (QDS)

environment

A QDS describes its evolution under the so-called Markovian
approximation, which is valid in the weak coupling limit.

* Open quantum system:

* Closed quantum system : QDS wsssmmmp Unitary group

(since time evolution is unitary)
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In the Schrodinger picture: (7% )¢>0

one-parameter family of bounded linear, CPTP operators
on the Banach space of trace class operators 7 (H)

1. Ty =1id;  (the identity operator)
2. Ty 0T =T, sVt,s > 0; (the semigroup property)

In the Heisenberg picture: (T*t)tzo
one-parameter family of bounded linear, CP operators on B(H)

o | ;: adjoint of T} w.r.t. the Hilbert-Schmidt inner product.
VpeTi(H), Ae B(H) Tr(ATi(p)) = Tr(Twe(A)p)
o T\ (I) = I (unital)
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e QDSs reduces to one-parameter unitary groups (Tt)teR

(instead of (71%)¢>0)

€.g.. (thuN)teR (vN for von Neumann)
p(t) = TN (p(0)) == e~ "*H p(0)eH,

(von Neumann eqn.) p(t) = —i[Ha P(t)]é

Henceforth consider: (Tt)t : QDS acting on a Banach space X ;

« Generator of the QDS: [

L = dt|t Jir Ve X; T, = e'*;

€.g.. ﬁ(p) — %‘tZOTtUN(IO) — _Z[Ha p]
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A QDS (Tt)t with generator L acting on a Banach space X;
¢ Uniformly continuous: if

limy 0 SUP,e x| |o)|=1 |Tyx — z[| =0

o if and only if the generator £ is bounded
* the convergence is linear in t, forall x € X; ||z|| = 1.

i.e. ||Tix—z|| <constt VzeX;l|lz|l=1.

e Strongly continuous: if for all * € X,

hmt\l,() TtZC — T 1.e. 1imt¢0 HTtZE — .CEH =0
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¢ Proof of the Claim: for a uniformly continuous QDS
| Tix — x|| < const.t Ve X;||lx||=1.

| Ty — z|| = ||Tix — Tox|| (.0 To = id)
= || [y LToxds|| = || [ TsLaxds)

< ||Cal | sup,eio 1T

< const. ¢
(since L is bounded)

—
Finite-dimensional open quantum systems evolve linearly in time.

Vze X, |zl =1 g
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« Generator L is unbounded

 All we know is that
lim o || Tix —z|| =0 Vo € X.

* No information about convergence rates

« There does not exist a uniform bound linear in ¢,

Our Aim

To find rates of convergence for strongly continuous QDSs
(unbounded generators)

« Analytically richer case
 Includes all the examples mentioned previously
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To study convergence rates for strongly continuous QDSs (7} ); :
(Schrodinger picture)
* We need a suitable norm on the space of quantum channels

‘- Vi, T} . alinear CPTP map, i.e., a quantum channel

Or more generally,
on the space of real linear combinations of quantum channels

{e,g, (T, — Ts), t,3>0,t7é8;}

i.e. on the space of Hermiticity-preserving maps

Commonly used norm: Diamond norm

For a Hermiticity-preserving map T on D(H),

| T'|]o := sup,epmen) (T ®id)p|l1
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To study convergence rates for strongly continuous QDSs (7} ); :

Diamond norm:

I T'|]o := sup,epmen) [|(T ®id)p|1

* Note: for 2 quantum channels T T’, HT — T’Ho < 2

H ¢ H<> is useful for the analysis of the continuity of channel
capacities in finite dimensions [Leung & Smith]

T —T'|[e 0 = eg. C(T)~C(T")

(classical capacities)
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Unsuitability of the diamond norm when the underlying
Hilbert space H is infinite-dimensional

e.g. Attenuator channel T?7 1 : attenuation parameter

« defined uniquely through its action on a coherent state

Ty(la){al) = |v/na){y/nal

—1 : (time-dependent attenuation parameter)

- For n=n(t) :=e¢
+ Let Tatt . — Tty (T2*); : strongly continuous QDS
* But HTtatt — T;’ttHo: 2 forany t # s,t,5 >0
« All attenuators are a maximum distance (=2) from each

other w.r.t. H ® H<> no matter how close their
attenuation parameters are !
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HTtatt — TgttHo: 2 forany t # s,t,s € R

* What does this imply?

It implies that the diamond norm H ® Ho is too strong

a distance measure to capture the dynamics of the

QDS (Ttatt ) ;

« To capture its dynamics & that of general infinite-dimensional
systems a weaker distance measure is nheeded
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Remedy: Consider instead Energy-Constrained Diamond norms
“ECD-norms”’ [Winter], [Shirokov], [Pirandola]

For a Hermiticity-preserving map 1" actingon 7, (H) :

HvE o« — ]
|T|[s7 = SUP e D(HRH) (T ®id)pl|1
Tr(pH) < E

p1 = Tra p; H >0 E > info(H)

(typically the Hamiltonian) (spectrum)

 In the limit £ — oo one gets the usual H o H<>

Rationale: [Winter ‘17]
. i ) HTatt _TattH — 9
* To realize the maximal distance t s S
one needs to probe them with highly energetic states.

« But in most communications settings with such channels,
there is an energy constraint on the input states.

* Hence, it is natural to put an energy constraint!
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Remedy: Consider instead Energy-Constrained Diamond norms
“ECD-norms”’ [Winter], [Shirikov], [Pirandola]

For a Hermiticity-preserving map 1" actingon 7, (H) :

H,E :
|T|[s7 = SUP e D(HRH) (T ®id)pl|1

Tr(pH) < E
p1 = 1rs p; H >0 E > info(H)
(typically the Hamiltonian) (spectrum)
In terms of ECD-norms, for attenuator channels: [Winter]
7ot — 7ot |HF 0 as t—> s  (H=N:=d%)

Compare with: HTta'tt — TgttHoz 2Vt,s >0t+#s

HTtatt - TsattHf’E — HTta_té - T(‘)ltt‘ ’f’E (semigroup property)

Equivalently,  ||T"" — ingI’E—> 0 ast—0
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|7t —id||5" 0 as t — 0
Note however: no information about rate of convergence

Our Aim: to make a refined analysis of convergence rates
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Outline of the rest

Aim (1): To make a refined analysis of convergence rates
of strongly continuous QDSs

« To do this: introduce a generalized family of ECD norms
« State our Main Results concerning convergence rates for
* (I) Closed quantum systems
* (lI) Open quantum systems

« (lll) Quantum Speed limits

« Key mathematical ingredient of the proofs

« Address Question (2) : continuity bounds of entropies
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Outline of the rest
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of strongly continuous QDSs

* To do this: introduce a generalized family of ECD norms
« State our Main Results concerning convergence rates for
* (l) Closed quantum systems
* (lI) Open quantum systems

« (llI) Quantum Speed limits

« Key mathematical ingredient of the proofs

* Address Question (2) : continuity bounds of entropies
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To find rates of convergence for such strongly continuous QDSs

* We introduce a generalized family of ECD norms labelled
by a parameter o € (0, 1]; «a-ECD norms

H)‘E - 3
| T]lgz0" = suppepnen) (T @id)pll
Tr(p1H2oz) S E2a

'[" : a Hermiticity-preserving map acting on Ti(H)
pr="Trap;  H >0, E > info(H)
« Fora=1/2, (2a = 1) it reduces to the usual ECD norm
HE __ HE .
T 0™ = [T]le7 = suppepmen (T ®id)pll:
Tr(p1H) < E

Studying the entire family of a-ECD norms leads to a more
refined analysis of convergence rates of QDSs
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) || Hoza is a norm for Hermiticity-preserving maps

Hﬂ@a —0eT7=0  Vae(01];

2) Er|e H is non-decreasing and concave:
for ' > FE > inf(c(H)),

2
H.E' / H.E
CllellP< 1o 12 < (2) 7 Jo 2

& in the limit ./ — 00, one recovers the usual diamond norm:
For o = 1/2,

SUPE>inf o (H H ° Hozo‘ =l (1), (2), & a host of other
properties were found by
(3) Fora < 5, HTH < ||TH<I>{2’O{E Shirokov & Winter
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Operational interpretation of a-ECD norms

 In binary hypothesis testing between quantum channels

 You are given a quantum channel & told it is either N7 or N5

* You need to determine which one it is!

C
probe state % Nl or NQ?
PAC - B

A unknown channel inference

Tr(pat®) < E* N7 or N5

(energy constraint)
H; Hamiltonian governing A

measurement

Minimum probability of . . [T
error in inferring whether = 5 — 5”./\[1 — N2H<>2’O¢
the channel is N7 or N>
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Outline of the rest

Aim (1): To make a refined analysis of convergence rates
of strongly continuous QDSs

* To do this: introduce a generalized family of ECD norms
« State our Main Results concerning convergence rates for
* (l) Closed quantum systems
* (lI) Open quantum systems

« (llI) Quantum Speed limits

« Key mathematical ingredient of the proofs

* Address Question (2) : continuity bounds of entropies
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Main Results (I): Dynamics of Closed Quantum Systems contd.

Consider the evolution of density operators: (TtUN)t

p(t) = TPV (po) == e " pyett with p(t) = —i|H, p(t)];

« Winter proved [2017]: For E > inf(c(H)),V, t,s > 0.
TN — TN || < UE)s(Jt— s ...(a)

Theorem 2: Let « € (0, 1]; then for E > inf(o(H)),

NTPN — ToN |57 < 29, Bt — s|* ¥, t,5 > 0.
In particular, for « = 1/2, g, = 2,
|TPN — TN |57 < 4VE|t — 5|2 ....(b)

(compare with (a))
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[Winter ‘17] T N — id|[s7 < (4F)3 Vit

v . 11| H,E
[Becker, D ‘19] T3 N — id||s ™ < AWEVt

— 4/ t —=bound

— Jt -bound

0.00 0.05 0.10 0.15 0.20 0.25
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Main Results (Il): Dynamics of Open Quantum Systems
 infinite-dimensional open quantum systems
« governed by strongly continuous QDS (71%); (Schrodinger pic.)

» s.t. adjoint semigroup (T,;); (Heisenberg pic.) has a generator

[Davies ‘77] E* (S) — %‘t:OT*t(S)v VS = B(H)

Col( &) = Sy R CEE ST S

(Gorini, Kossakowski,
Lindblad, Sudarshan)

In particular, G = -5 . LjL; —iH =K —iH,

H : self-adjoint but unbounded {L;}jen : Lindblad-type operators
(results in unitary dynamics) (result in dissipative dynamics)
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Main Results (I1): Dynamics of Open Quantum Systems

« To state our results, we need to introduce:

A notion of smallness of one operator w.r.t another

Relative boundedness: for positive operators A, B,

B is relatively A-bounded if D(A) C D(B) & V¢ € D(A)
da>0,b2>0 s.t.

| BY|| < af|Ap| + bl[4]]
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Main Results (Il): Dynamics of Open Quantum Systems

Theorem 3 [Open systems]:
Assumptions: governed by a strongly continuous QDS of GKLS-type form

H : Self-adjoint operator (e.g. Hamiltonian)

{L;}jen : Lindblad-type operators; K := —35 > .\ L; L

1. If Hisrelatively K-bounded

T, — T |57 < wic (B)|t — s

e.g. for the QDS (T*); :
H =0, K =N =a"a (number operator)
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Attenuator channel (7/"), with attenuation parameter 7(t) = e™!

« Action on coherent states: T2 (|a){(a|) = e ta) (e |
- Its generator: L' (p) = L =0T (p) = apa* — L(Np+ pN)
. The generator of the adjoint semigroup (124 "):
Li(A) =a*Aa— z(NA+ AN) VAeB(H)
L Tr(ALE (p) = Te(LL (A)p)
« Comparing with the GKLS-type form
Y ienLIAL; + G*A+AG G =—33,nLiLj —iH =K —iH,
weseethat H =0, K = N = a“a (number operator)
* No unitary dynamics; evolution entirely dissipative

So H is relatively K-bounded & K = N.
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Attenuator channel (77""): with attenuation parameter ¢!

Theorem 3 2. If H is relatively K-bounded

1T, — Te||5b” <wr (B[t —s|® ¥, t,s>0.

[Tt — Te|[ o2 < wn (B[t —s|* ¥, t,5 >0,

In particular, for « =1/2, s =0,
|Tot —id||" < wn(BE)VE Vi >o.

It provides a refinement of the asymptotic result: [Winter ‘17]

1T —id|[g ™" — 0 as t —s 0
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Main Results (Il): Dynamics of Open Quantum Systems

Theorem 3 [Open systems] contd.:

Under the same assumptions as before:

2. IfK isrelatively H-bounded
1T, — Tul|od® < w(B)|t — s]®

<>20£
K : small dissipative perturbation of the Hamiltonian dynamics
e.g. for guantum Brownian motion

Theorem 3 applies to various examples
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Outline of the rest

Aim (1): To make a refined analysis of convergence rates
of strongly continuous QDSs

* To do this: introduce a generalized family of ECD norms
« State our Main Results concerning convergence rates for
* (l) Closed quantum systems
* (lI) Open quantum systems

« (IlI) Quantum Speed limits

« Key mathematical ingredient of the proofs

* Address Question (2) : continuity bounds of entropies
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Previously known: [Mandelstam & Tamm ‘91], [Levitin & Toffoli ‘09]

For closed quantum systems there is a sharp bound on the
minimum time © = {min

over which [¥(0)) — [¥(1)) i.e. (¥(1)[¥(0)) =0

orthogonal

. 7T 7T
tmin = Max { AT 35 )
FE : energy of the initial state

/A F - energy variance of the initial state
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Theorem 4 [Closed systems]

a) Let Y(0) = 1o : initial state to the Schrodinger eqn., with
E > Tr(|H o)

The minimal time needed for it to evolve to a state ¥ (%)
with angle 0 = cos™!(Re(2(t),(0)) € [0, 7] :
tmin > (1 —cos@)/2E

(b) Let p(0) = pg : initial state with
B> > Tr(|H[**po) a € (0,1);

The minimal time needed for it to evolve to a state A(1)
with relative Bures angle 0 = cos™!||1/p(0)\/p(t)||1 € [0,7/2]

1
p > (2=2cos0 /ey
min -— Jao 'E
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Theorem 5 [Open systems]: (governed by a strongly continuous QDS
H : Hamiltonian of GKLS form)

{L;}jen : Lindblad-type operators; K := —5 > .. LiL
s.t. K is relatively H -bounded
Let po : initial state with purity p; = Tr(p3) for which
B2 > Te(|H|2* po) a € (0,1];
The minimal time needed for it to evolve to a state

(a) with relative Bures angle 6 :
1/
2—2cos @
tmin 2 ( wH(E) )

o (|pfpi|)1/o‘

tmin 2 2wy (E)

(b) with purity pPs -
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Key mathematical ingredient of the proofs: Favard spaces

For any QDS (Tt)t acting on a Banach space X , there

exist Favard spaces, F,,a € (0,1] :

Fp:={z € X : |z|p, :=sup;sp || =Ttz — z)|] < oo}

ie. for z € Fy, |[(Tiw — 2)[| < |o|p,t°

a-Holder continuity

How does the energy constraint arise?

* Favard spaces can be equivalently described in terms of
the resolvent of the generator £ of the QDS

Key Lemma: 1 € F,, < supywq ||[A“LA — L) z|| < oo
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Let us now move onto the second question:

(2)  Continuity of entropies in infinite dimensions

« Do entropies in infinite-dimensions satisfy continuity bounds ?

 If so, what are the convergence rates?
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Continuity of entropies

In finite dimensions, the entropies satisfy continuity bounds

e.g. let p,o € D(H), dimH=d< x
von Neumann entropy: S(p) = — Tr(plog p)
* Audenaert-Fannes inequality: |f %Hp — 0”1 <e¢€
then |S(p) — S(0)| < elog(d— 1)+ h(e)
h(g) : binary entropy  h(z) i= —zlogz — (1 — ) log(1 — )

* For infinite-dimensional spaces, continuity fails dramatically
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Entropies of infinite-dimensional quantum systems

Let p € D(H), H :infinite-dimensional Hilbert space

S(p) is not continuous & is unbounded in every neighbourhood!!

B (P) . €-ball in trace distance

Vo,3p" € B.(p), forwhich S(p')is infinite
* (pn)nen; [lon = pllt = 0, then S(p,) £ S(p)

How can one prove continuity bounds for the entropy
if the entropy is discontinuous?

. Continuity bounds hold under additional assumptions!
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Entropies of infinite-dimensional quantum systems

Let [ : Hamiltonian, such that

°* Forany 3>0, e PH ¢ T(H) & satisfies:
The Gibbs’ Hypothesis :

—BH .
Y(B) := mo—pm eXists

o It is well-known that the Gibbs state ’7(5) maximizes
the von Neumann entropy among all states p s.t.

Tr(pH) < E (E>inf(c(H)))with 8 = 3(F) s.t.
Tr (e P BPH(H - E)) =0

Denote V(E) =v(8(F))
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Entropies of infinite-dimensional quantum systems

Theorem [Winter ‘15] : For p,o € D(H)s.t. %Hp —o|h <e¢
& both Tr(pH), Tr(cH) < E energy constraint (E > inf(c(H)))
with [ satisfying the Gibbs’ hypothesis,

S(p) = S(0)| he)

7
¢ limgi,o ES(’}/(E/&“)) =0 [Shirokov]

e To get a more refined/explicit bound, one needs to determine
the high-energy asymptotics of Gibbs states

E >inf(o(H)), E/e -+ o0 as € — 0,
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Main Results (1V): High energy asymptotics of entropy of Gibbs
states

Theorem 6: under the assumptions of the previous theorem & (*)
S(v(F)) :@og E(1+o0(1)) as £ — o0 !

? (logarithmic divergence)

eg. If H=N =a"a, (%) holds & n = 1.

Corollary: [Becker, D]

1S(p) — S(o)| < 251 +o0(1)) ase—0

(more quantitative/explicit bound)
Compare with: Logarithmic divergence!

1S(p) — S(0)| < 2eS(Y(E/€)) + h(e)  [Winter ‘17]
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« Fact: For the case of a quantum harmonic oscillator
H=H,.=a"a+1/2,

we can explicitly evaluate the high energy asymptotics
of the Gibbs state & this yields:

S(vy(E)) ~logE as E —

* Hence, Theorem 6 shows that the logarithmic divergence of
the entropy is not a special feature of ff .. butis

universal for many classes of Hamiltonians

» Technical tool: Weyl’s law
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Main Technical Ingredient: Weyl’s Law

« It concerns the quantity:

Ny (E) : the number of eigenvalues of /1 that are at most
of energy £ (counted with multiplicities).

- gives an asymptotic description of Ny (F) for certain
classes of operators in the limit of high energies

& shows that this distribution is universal
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Main Results (1V): High energy asymptotics of entropy of Gibbs
states

Theorem 6: under the assumptions of the previous theorem & (*)

S(v(F)) :@log E(l14+o0(1)) as F — oo 7
?

Consider 2 auxiliary functions:
NITI(E) => A g NE(E) = AN

NN €o(H) NN €o(H)
A+ N <E A+ N <E
.. : : NI (E :
(%) s the assumption that ¢ :=limg_, i (E) exists

Ny, (E)

n=(—1)""

Weyl’s Law ensures that these 2 functions have a universal asymptotic
behavior for a large classes of operators as I/ — o0
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Corollary :

S(p) — S(o)| < 2enlog(E/e)(1+0(1)) ase — 0

Similar bounds holds for other types of entropies & for
capacities too [Becker &D], [Winter], [Shirokov]
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Two issues concerning infinite-dimensional quantum systems:

(1) Dynamics resulting from strongly continuous QDSs

Since the generators of such QDSs are unbounded, bounds

on the dynamics need to be considered in norms weaker
than the commonly used diamond norm

« We introduced a family of a-ECD norms to obtain a
more refined picture of quantum evolution.

« We improved previously known bounds on the dynamics of
closed quantum systems & obtained, for the first time,
bounds on the dynamics of open quantum systems.

« Technical tool: Favard spaces

« Applications: Quantum speed limits
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(2):+ Studied the high energy asymptotics of the entropy of
Gibbs states

« This allowed us to make previously known continuity
bounds [Winter ‘17] on entropies (& on capacities
[Shirokov ‘17]) more quantitative in the asymptotic
regime of small distances between states.

* Technical tool: Weyl’s Law
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