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Equality case

» comparison of bipartite channels: (Gour, 2018)
» comparison of channels: da, = dg, = 1, restrictions on «:
» post-processings (degradability)

AL=rAy,  drZaod,

(Chefles 2009, Buscemi 2012,2016,...)
» comparison of quantum experiments: c-q channels

? .
P, pk €S(B1), o1,...,0k €S(B2), pi=afo;),Vi

(Alberti & Uhlmann 1980, Buscemi 2012, Gour et al. 2018)

» comparison of classical experiments: (Blackwell 1953,
Torgersen 1970)

» more general comparison of classical channels: (Shannon 1958)
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Equality case

Preorder: ®; = &1 <— &1 = a(P,)

» formulated as an SDP problem
» characterized by
» a set of inequalities in (some extension of) conditional
min-entropy
» risks of procedures in decision problems
» success probabilities in hypothesis testing problems
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Deficiency

Let us return to the general case:

» we define the deficiency as
o7 (®1]|®2) := min ||[P1 — (D
7(P1[/P2) ael!}\l 1— a(P2)lfo

here T is some subset of superchannels.

» pseudo-distance:
A’T(cbla ¢2) = max{&r(d)lHd)g), 57(¢2H¢1)}
» equivalence relation:

O1 vy Oy = A7(P1,$2) =0



Deficiency

» These are extensions of Le Cam deficiency/distance for
classical statistical experiments: F; = {py,6 € O},
‘FZ = {q07 NS e}

O(/1[[F2) = minsup f[py — a(ao) |1
» Randomization theorem (Le Cam 1964): deficiency is

characterized by comparing risks in decision problems:
informativity



Randomization theorem for classical channels

&1, 5, - classical channels with equal input spaces: A; = Ay = A,
T = post := set of post-processings

Theorem
Let € > 0, Then post(P1]|P2) < € if and only if:
for any ensemble € = { )\, px} of classical states p, € S(A),
€
Psucc(q)l(g)) S Psucc(¢2(€)) + EPsucc(g)a

here ®;(€) = {\«, ®i(px)}.



Quantum randomization theorems

» for c-q channels (quantum experiments) (Matsumoto 2010):
risks of quantum decision problems



Quantum randomization theorems

» for c-q channels (quantum experiments) (Matsumoto 2010):
risks of quantum decision problems

» for quantum channels (J 2016): Jpost(P1||P2) < € <=
Psucc(q)l & ’dR(g)) < Psucc(¢2 & /dR(g)) + gPsucc(g)

for any ensemble on AR



Quantum randomization theorems

» for c-q channels (quantum experiments) (Matsumoto 2010):
risks of quantum decision problems

» for quantum channels (J 2016): Jpost(P1||P2) < € <=
Psucc(q)l & ’dR(g)) < Psucc(¢2 & /dR(g)) + gPsucc(g)

for any ensemble on AR <—-
for any p € S(AR):

27Hmin(R‘Bl)P1 < 27Hmin(R|BZ)p2 + E27Hmin(R‘A)p
- 2

pi = (®; ® idr)(p), Hmin - conditional min-entropy
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Outline

&1, ®, bipartite quantum channels, 7 = sc := all superchannels

Goals: characterize dsc(®1||®2) by
» inequalities in (extended) conditional min-entropies

> success probabilities in some hypothesis testing schemes

Tools:

» the duality of diamond norm and conditional min-entropy
(and extensions)

» comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
» but also as a dual norm (Gutoski 2012, J 2014)

» properties (monotonicity) of conditional min-entropy

> minimax theorem (Le Cam)
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Choi isomorphism

Let [la)) =X, 1i)ali)a, A A

A | [La)
( a A
the inverse:
T B

1 or

1 14))
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Ordered spaces of hermitian maps

» L = L(A — B) = the space of hermitian-preserving maps

¢ B(A) = B(B), &(Y")=¢(Y)

» LT = LT(A— B) = the cone of completely positive maps
» (L£,L%) is an ordered vector space
» Choi isomorphism:

(L, L) ~ (Bp(BA), B(BA)™)
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For ¢ € L(A— A), put 7(¢) := ((/alCs|la))

A ¢ A

Cy

the trace of ¢ as a linear map
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The trace

Partial trace: for ¢ € L(AAy — BAo)

A(bﬁ

Ao

» if o € LT(AA) — BAp) then 7a,(¢) € LT(A — B)
» does not map channels to channels
> 7(¢ o (a®id)) = 7(7a,(¢) ° )
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For £L = L(A — B), we represent
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The ordered dual of L(A — B)

For £L = L(A — B), we represent

L= L(B — A),

with duality

(LY = L£H(B — A)

(0, 0) =7(pod) =7(porh) =Tr CCy-:

A

A

~

A/

-

Cy
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Diamond norm and conditional min-entropy

For ¢ € L = L(A — B), the diamond norm is defined as

[¢llo =" sup [lo®ida(p)ll1
PES(AA')

» distinguishability norm for channels B(A) — B(B)

» constructed from the convex structure of the set of channels
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Diamond norm and conditional min-entropy

Let
» C=C(A— B) C LT the set of channels

» C is and affine section of £
> dual section:
C={ye(LY) (y,a)=1, YaeC}
Dual expressions:
llollo = Lnelg min{A > 0, —Aa < ¢ < Ao}

= max max
vel —7§n§7<n’ ¢)
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Diamond norm and conditional min-entropy

The dual norm: for ¢ € L*,

[9]° = minmin{A > 0, ~\y < ¢ < M}
=

= ma ma
aeg%éaw,@

For cp maps: if ¢ € (L1)*:

[4l° = minmin{A > 0,4 < Ay}
yeC

= max(¢,a)



Diamond norm and conditional min-entropy

» maps in C:

o€ S(A)




Diamond norm and conditional min-entropy

» maps in C:

o

LiT

o€ S(A)

» in Choi representation:

C = {O'A Rlg,op € S(A)}



Diamond norm and conditional min-entropy

» maps in C:

o A

o€ S(A)
Bir

» in Choi representation:

C = {UA Rlg,op € S(A)}

» for ¢ € (LT)*, p= Cy:

lv|° = m‘iS?A) min{\ > 0, p < Aoa ® Ig} = 2~ Hmin(BIA)

oa€



Diamond norm and conditional min-entropy

» maps in C:

o A

o€ S(A)

LiT

» in Choi representation:

C = {O'A Rlg,op € S(A)}

» for ¢ € (LT)*, p= Cy:

lv|° = m‘iS?A) min{\ > 0, p < Aoa ® Ig} = 2~ Hmin(BIA)

oa€

» conditional min-entropy: Hmin(B|A),
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Diamond norm and conditional min-entropy

Dual expression:

11I* = max{¢, ) = max{({g|(a © id)(p)|lg)

P A o B
= max )
aeC B’

operational interpretation of Hpin(B|A), (Konig et al., 2009):

(up to dg) the largest fidelity with maximally entangled state, that
can be obtained by applying a channel on A
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The 2-diamond norm and conditional 2-min-entropy

Let now

> L= E(A]_AZ — 8182)
» Cy = C2(A1 — Bi, Ay — By) = set of superchannels:

(07] 0%

» C» is an affine section of £T
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The 2-diamond norm and conditional 2-min-entropy

The dual section C~2: set of superchannels

o A1 Bl f)/ A2

o is a state, v a channel



The 2-diamond norm and conditional 2-min-entropy

» we can define a pair of dual norms in £, £L* as before:

[¢ll20 = min min{A > 0,—Aa < ¢ < Aa}
= max max R
~eCs —’YS”]S’Y<77 2
[4]%° = min min{\ >0, —=\y <) < My}
veC2

= maX max
max _max (v,&)
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The 2-diamond norm and conditional 2-min-entropy

» we can define a pair of dual norms in £, £L* as before:

|#ll20 = min min{A > 0, —Aa < ¢ < Aa}

a€eCy

=max max (n,¢
el —7§n§v< )

9[> = min min{A > 0, ~Ay < < M}
yela

= maX max
max _max (v,&)

> || - ||2o is a distinguishability norm for superchannels

» from || - ||?°, we obtain the conditional 2-min-entropy



The 2-diamond norm and conditional 2-min-entropy
For ¢ € (L1)*, p= Cy:
10]12° = minmin{A > 0, ¥ < Ao %y ® Trg,} = 2~ mn(BIA)
ay

= max(a, ) = max({ g, |(a @ i) o)z ,)

a€Cy



The 2-diamond norm and conditional 2-min-entropy
10]12° = minmin{A > 0, ¥ < Ao %y ® Trg,} = 2~ mn(BIA)
o,y

= max(a,¥) = &ne%é« Ig,B,|(a ® id)(p)|IB,B,))

a€Cy

1Y A o By

~

A? B2

max
Qaq,002
By




The 2-diamond norm and conditional 2-min-entropy
For ¢ € (L1)*, p= Cy:
10]12° = minmin{A > 0, ¥ < Ao %y ® Trg,} = 2~ mn(BIA)
ay
= max(a, ¥) = g‘e%f« Igg,|(a @ id)(p)|Ig;B,))

a€Cy

Useful properties of H,qui)n: (Gour, 2018)

» monotonicity for any superchannel
(CNS CQ(B3 — B, A1 — A3):

6] > (1©(a)]1*

> additivity
I @ |12 = [|]1> ||| >
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Comparison of bipartite channels

We compute the deficiency dsc(P1]|P2):

®1 — a(d2)]o =2 v, &1 — a(P
min [[®1 — a(®2)[lo (lel;ﬂ3§1< ;1 — a(P2))
720

(minimax thm.) = 2maxmin{~y, ®; — a(P;))
v o«

< 2max (max(2,5(00)) — max(.a(02)))

<e?
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max(y, a(P;)) =7
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Comparison of bipartite channels

max(y,a(®:)) = max(7g, (v * @) ) = 785(7 + ®;)[*°

a€Cy

Bi
a1 (0%
By Al Al 18] |B
By Ao By
(= = )
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Comparison of bipartite channels

Theorem
Let € > 0. Then dsc(P1||®2) < € if and only if for all systems
A3, B3 and all v € L1(B3By — A3Ag) we have

€
170 (3 # @12 < [l785 (7 % ®2)I** + S 17°-

where

By A Al 5

7By (7 * ®i) = By Ap By

(=)

We can restrict to A3 ~ A; and B3 ~ B;.
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Conditional min-entropy and guessing probabilities

For an ensemble €& = {\,, px}, px € S(A), let

¢e €LT(B—A), Coo=pe:=)_ |x)(x| ® Aepx

X

pg = -5 )\xpwi

-classical-to-quantum map

Optimal success probability (Kénig et al. 2009)

Psucc(g) = m/\?yxz AxTr [pox] = H¢SHO = 2_Hmin(X|A)pg
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Conditional min-entropy and guessing probabilities

Let v € LT(R — A), p = C, € S(AR). We produce an ensemble
1 .
5,0 = {ﬁvpx}7 Px = (’dA ®L{f)(p) € S(AR)’
R

where
Z/If = generalized Pauli unitaries on Hrg.

Then we have

PSUCC(gp) = 7” H<> 2 Humin(R|A)p



Conditional min-entropy and guessing probabilities
Channel discrimination problem:
» an ensemble of channels £g = {%,U)’f}
R

» testers (PPOVMs) with input state p:

P M,

> success probability:

. 1 _ 4
Pasce(Er. ) 1= Mg 3 T (1d © U)W = 27 ol
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Conditional min-entropy and guessing probabilities

d3 :
For any ensemble £ = {4, W, },%; of unital channels:
R

1
Psucc (€, p) < _— 2~ Hmin(R|A),
dr

For a pair of quantum channels ®; : A — Bj, dpost(P1]/®2) can be
characterized by comparing testers of the form

P e, M,

for this type of tasks, for any p € S(AR).
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A more complicated situation - we maximize over ay, ap:

Pxy
g
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| U | Uy
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I
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I

' |
| B A B B
| 3 ’)/ :A_S i ®z i 3
| |
I
By LA By
I
| C |
| B/ | B/
| 0 ' * 0
| Vy | Vy




Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over ay, ap:

Py
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A more complicated situation - we maximize over ay, ap:
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Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over ay, ap:

Py
(B | e 1B !
| Uy | Uz |
|
| | | \dp, M,
: e y 2 |
I I
I | | |
AN e R P s 1 R PO
| | B | S y
By L Ao By ___ .
| |
| C : I : dBo BZ/
[ B! [ | B [
| 0 , 1| v+ [Bo ) (Bell)
| Vy | [ Vy :
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Let £ = {\, pxy} be an ensemble on B3A3AqBy and {N,} a
POVM on ByBj. Consider the following scheme:

1. pre-processing: pick and apply any a € C(A3 — RA;);
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Let £ = {\, pxy} be an ensemble on B3A3AqBy and {N,} a
POVM on ByBj. Consider the following scheme:

1. pre-processing: pick and apply any a € C(A3 — RA;);
2. apply ¢;;
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o
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Comparison of bipartite channels by guessing probabilities

Let £ = {\, pxy} be an ensemble on B3A3AqBy and {N,} a
POVM on ByBj. Consider the following scheme:

1. pre-processing: pick and apply any a € C(A3 — RA;);

2. apply ¢;;

3. measurement: pick any POVM {M,} and measure M @ N.

Py Bs M,
o
A3 Ail . |Bi
3
Ao | Bo N,
By




Comparison of bipartite channels by guessing probabilities

Let £ = {\, pxy} be an ensemble on B3A3AqBy and {N,} a
POVM on ByBj. Consider the following scheme:

1. pre-processing: pick and apply any a € C(A3 — RA;);
2. apply ¢;;
3. measurement: pick any POVM {M,} and measure M @ N.

The optimal success probability is

Psucc(gacbi: N) = rg?\/),( Psucc(ga(cbi * Ck)*(/\/l ® N))



Comparison of bipartite channels: guessing probabilities

Theorem
Jsc(P1||P2) < € if and only if for any Az, Bz, any POVM N on
BoBj and any ensemble £ = { )y, pxy}, on B3A3AgBy, we have

€
Psucc(gaq)h N) S Psucc(€7¢27 N) + EPsucc(g)

We may restrict to A3 ~ A1, B3 ~ By and N = B the Bell
measurement.



Deficiency for T C C,

Let 7 C C; be
> convex

» closed

> ToTCT



Deficiency for T C C,

Let 7 C C; be
> convex

» closed

> ToTCT

Then we obtain similar results with modified conditional
2-min-entropy:

2
Hign, = — log(max( 7, a))



Deficiency for T C C,

Let 7 C C; be
> convex

» closed

> ToTCT

Then we obtain similar results with modified conditional
2-min-entropy:

2
Hign, = — log(max( 7, a))

For characterization by guessing probabilities: restrictions on
allowed pairs (a, M) of pre-processing and measurement.



