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Resource conversion in teleportation

» Standard teleportation: [Bennett et al. 1993]
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Resource conversion in teleportation

» Standard teleportation: [Bennett et al. 1993]

[qg] +2[c = c] > [q — 4]

» Port-based teleportation: [Ishizaka and Hiroshima 2008]

Nlqq] + (log N)[c — c] > [q — 4]

This is worse... why care?

Because port-based teleportation has unitary covariance!
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Standard teleportation protocol
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Port-based teleportation

[Ishizaka and Hiroshima 2008]
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Port-based teleportation

......... [Ishizaka and Hiroshima 2008]
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Port-based teleportation
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Why is PBT interesting?

» Partial trace commutes with W®N: PBT is unitarily covariant.

» PBT enables instantaneous non-local quantum computation

(INQC). [Beigi and Kénig 2011]

» INQC can be used to break position-based cryptography.

[Buhrman et al. 2014]

Unitary covariance leads to the fact that

perfect PBT is impossible with finite resources.

[Nielsen and Chuang 1997; Ishizaka and Hiroshima 2008]
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Variants of PBT

Deterministic PBT

Protocol always yields final state that approximates target state.

Probabilistic PBT

Protocol yields exact target state with certain probability.

» Unitary covariance: Perfect PBT impossible with finite

resources.

» Goal of this talk: Understand symmetries of PBT and determine

asymptotic performance of PBT protocols.
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Deterministic PBT

» In deterministic PBT the protocol always yields a final state as an

approximation to the target state.

» Hence, PBT protocol implements qudit channel A that

simulates ideal channel.

» Figure of merit: entanglement fidelity

Fg = F(A,id) = (O}, [(id @A) (L) | D)

» For PBT the diamond norm distance is exactly equivalent to Fy:

Ilid =Alle = 2(1 — Fy). [Pirandola et al. 2018]
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Deterministic PBT and state discrimination

>

Deterministic PBT is equivalent to state discrimination of the

uniformly drawn states [Ishizaka and Hiroshima 2009]

(7

wANB = TI’B,,C PangN.
Success probability g of discriminating between w():
d2

= —F4.
q Nd

Suggests pretty good measurement (PGM) as POVM.

Further protocol simplification: |¢) = EPR®N

We call (EPR®N, PGM) the standard protocol.
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Probabilistic PBT

>

Probabilistic PBT yields the exact target state with success

probability p, and aborts otherwise.

Extended POVM Eprop = {EWD I, where (%) corresponds to

abortion of the protocol.

Probabilistic PBT is a special case of deterministic PBT.

(Send random port when getting outcome “0”.)
Again: consider special case where |¢) = EPR®V.

We call (EPR®N, Epop) the EPR protocol.

(POVM Epop is now optimized over.)
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Existing results: optimal performance of PBT

» Standard deterministic protocol:

2
A R
N

[Ishizaka and Hiroshima 2008; Beigi and Konig 2011]

» Converse bound for arbitrary deterministic protocols:

F(*j <1- + O(N_s). [Ishizaka 2015]

1
4(d — 1)N2
» Closed forms for d = 2: [Ishizaka and Hiroshima 2009]
3
FStd:FEPR:]-__ oN—l
2 2 aN +o(NH)

8

~1/2 .
= -1/2
nN) + o(N~Y/%).

pEPRN1_<
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Existing results: optimal performance of PBT

» PBT has a lot of inherent symmetries

—> use representation theory (RT)!

» Leads to exact expressions for Fy and py in terms of RT

quantities. [Studzinski et al. 2017] and [Mozrzymas et al. 2017]

» Our main results: Asymptotics of these expressions for F}, Ff}d

and pE™® to first order.

» This talk focuses on

> standard deterministic protocol Fi¢;

= EPR probabilistic protocol p5™®.
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Natural symmetries of PBT

Notation: Uy ... unitary group; Sy ... symmetric group.

Permutation symmetry

Every port B; is equally good for teleportation

— Sy-symmetry of pgv = Tran @ avpgn.

Same symmetry for POVM elements

— Sy-action on {E"};.

Unitary invariance

The protocol works equally well for all input states

— Ug-symmetry of pgn.
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Natural symmetries of PBT

Proposition: Symmetries of PBT

Every PBT protocol A can be symmetrized to a protocol As with

F(As,id) > F(A,id), satisfying:

> Resource state @ npn is a purification of a symmetric Werner

state, i.e., invariant under Uffw ® U?N and Sy.
(. () e trvar 7 N
» Sy acts on {E"};, and each £\ is invariant under Us, ® Uy".
» A is unitarily covariant.

"Folklore” results, proofs in C. Majenz’s PhD thesis and our paper.
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Schur-Weyl duality

> Resource state ¢ vgv invariant under action of Uy Sy

— structure determined by Schur-Weyl duality.

» Group actions:
1) @ @ ) T [Pr11) @ e © [Wawy)

1) ® ... @ |y) s Ulgy) @ ... @ Uldy)

» Schur-Weyl decomposition:

(C)*N= P A @i
AbgN

> A 4 N: Young diagram with N boxes and at most d rows.
» Irreducible representations:
> [A]is anirrep of Sy with dim[A] = d).

> Vyisanirrep of Uy with dim Vj = mg .
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Exact expressions for F; and p, using RT

[Studzinski et al. 2017; Mozrzymas et al. 2017]

Standard deterministic protocol
1 2
d _ T e
th = N2 Z ( Z dﬂmd,#> ’

abgN—1 \ py=a+0O

where u = a + [ denotes a Young diagram u 4 N obtained from
o F4 N — 1 by adding a single box (!).

EPR probabilistic protocol

1 dy~
EPR 2 du
Pa ™ = - Z my

dV o N1 My

where u* is the Young diagram obtained from a 4 N — 1 by adding a single

da - )
box such that NZ¢£% js maximal.
Mmqd,
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Main results

Main result 1: standard deterministic PBT

For deterministic PBT using PGM and EPR pairs, we prove:
d>—1

d _
e =1-

3
> Recovers qubit result Ft9 = 1 — N o(N71).

2

» Shows that F51¢ > 1 —

is not tight, confirming numerical

evidence.

+ O(N—3/2+8) forany 6 > 0.
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Main results

Main result 2: probabilistic PBT

For probabilistic PBT using EPR, we prove:

b1 ﬁElAmax(G)] +o(NY),

where G is a Gaussian unitary, i.e, a Hermitian, traceless random

d x d matrix with independent Gaussian RVs as entries.

» For qubits (i.e.,d = 2 and Gis a 2 X 2 matrix):

E[Amax(G)] = 2~ %/2,
» Hence, our result “corrects” the qubit result

pEPR ~1-— \/% + O(N_l/z). [Ishizaka and Hiroshima 2009]
» Arbitrary d: use bounds on E[Amax(G)].
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Standard deterministic protocol

1) ‘ 1 A
_Fsdtgsympt
087 | — d:3
) e d=24
e d=5
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EPR probabilistic protocol

1F N . PR
oo...o...o....ooo..... _psfgsympt
08 | == oooooooooooooooo.oo — —— d =2
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Spectrum estimation & random matrix theory

» Recall Schur-Weyl duality:
(C)*N= P A @z
AbgN
» Consider the projective measurement {P, }+,n, where P, is the

orthogonal projection onto [A] ® V;.

» Intuition: {Py} a1, n respects the Ug- and Sy-symmetries of the

spectrum estimation problem.

Spectrum estimation [Keyl and Werner 2001]

Let Yy denote the outcome of the measurement {P,},,n applied to

p®N where p is a state. Then, as N — oo,
D
LYy — spec(p).
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Spectrum estimation & random matrix theory
» For the completely mixed state T = %,]l, the corresponding
probability distribution is called Schur-Weyl distribution:

1
pd,N(/l) = Tr(P,\r®N) = Wd/\md’/‘.

» Spectrum estimation: For the RV Y}, obtained from applying the

measurement {P,\},\ +,n to T, we have

iy, — (1/d,...,1/d).

» What about a “central limit theorem” version of this describing

fluctuations of Young diagrams?
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Spectrum estimation & random matrix theory

» To make this exact, define the centered and normalized RV
M- (N/d,...,N/d)
N/d

where Ay ~ py y takes values in Young diagrams {A 4 N}.

Ay

> Let M be the Gaussian unitary ensemble GUE(d): a Hermitian
random matrix whose entries are independent Gaussian RVs.

(df: exp(—3 TrH?) where H is a Hermitian matrix-valued RV.)

» DefineMg =M — Trsv')]l, called the traceless Gaussian unitary

ensemble GUEq(d).
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Main technical result

Fluctuations of Schur-Weyl distribution [Johansson 2001]
For the RV Ay = 1 /$(Aw — (N/d. ... N/d))

Ay L, spec(G),

where G ~ GUEq(d).
Note that spec(G) H—°°>a.5, Wigner’s semicircle law.

Main technical result (informal)

Strengthening of Johansson’s result:
Elg(An)] 7= E[g(spec(G))]
for “suitable” functions g.
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Application of Johansson strengthening

» Proof idea of asymptotics for standard and EPR protocol:
apply convergence of expectation values to exact RT formulas by
rewriting them as expectation values over Schur-Weyl

distribution.

» Main principle: Computing expectation values of (functions of)

GUE-distributed matrices is much easier!

» Example: probabilistic PBT

1 ) A

EPR
P = N j{: my
dV grgN—1 My

N
» Rewrite pf™R = EEa[(al + d)~1] and apply technical result.
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More results in the paper

Main result 3: fully optimized deterministic PBT

» Achievability bound:
d® + 0(d®/?)

F>1———~10 N73).
9= 4/2N? (V™)
» Converse bound:
d> —1
Fr<1— .
e = 16N2

» Asymptotics of optimal deterministic PBT are given by

Fi=1-0(N"2).
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Summary
» We discussed two variants of port-based teleportation (PBT):
> deterministic PBT with entanglement fidelity Fg;
> probabilistic PBT with success probability pg.

» Inherent symmetries: closed representation-theoretic formulas

for Fy and Pd- [Studzinski et al. 2017; Mozrzymas et al. 2017]

» Standard protocols: use connection between Young diagrams

and GUE to determine asymptotics.

» We also determine asymptotics of fully optimized case using

different proof technique.
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Open problems

Connection between Schur-Weyl distribution and GUE seems very

fruitful: get asymptotics for other "symmetric” tasks?

For the optimal deterministic case, achievability bound is optimal in

N, but not in d-dependence: improvement?

We considered natural limit of fixed d and N — co.
What about the limit N, d — co with N/d? = const?
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