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Resource conversion in teleportaƟon

▶ Standard teleportaƟon: [BenneƩ et al. 1993]

[qq] + 2[c → c] ≥ [q → q]

▶ Port-based teleportaƟon: [Ishizaka and Hiroshima 2008]

N[qq] + (logN)[c → c] ≥ [q → q]

This is worse... why care?

Because port-based teleportaƟon has unitary covariance!
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Standard teleportaƟon protocol
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Port-based teleportaƟon

Alice Bob
A0

A1 B1

Ai Bi

AN BN

[Ishizaka and Hiroshima 2008]
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Why is PBT interesƟng?

▶ ParƟal trace commutes withW⊗N: PBT is unitarily covariant.

▶ PBT enables instantaneous non-local quantum computaƟon

(INQC). [Beigi and König 2011]

▶ INQC can be used to break posiƟon-based cryptography.

[Buhrman et al. 2014]

Caveat

Unitary covariance leads to the fact that

perfect PBT is impossible with finite resources.

[Nielsen and Chuang 1997; Ishizaka and Hiroshima 2008]
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Variants of PBT

DeterminisƟc PBT

Protocol always yields final state that approximates target state.

ProbabilisƟc PBT

Protocol yields exact target state with certain probability.

▶ Unitary covariance: Perfect PBT impossible with finite

resources.

▶ Goal of this talk: Understand symmetries of PBT and determine

asymptoƟc performance of PBT protocols.
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DeterminisƟc PBT

▶ In determinisƟc PBT the protocol always yields a final state as an

approximaƟon to the target state.

▶ Hence, PBT protocol implements qudit channel Λ that

simulates ideal channel.

▶ Figure of merit: entanglement fidelity

Fd = F(Λ, id) = 〈Φ+
A′A|(id⊗Λ)(Φ+

A′A)|Φ
+
A′A〉

▶ For PBT the diamond norm distance is exactly equivalent to Fd:

‖ id−Λ‖⋄ = 2(1− Fd). [Pirandola et al. 2018]
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DeterminisƟc PBT and state discriminaƟon

▶ DeterminisƟc PBT is equivalent to state discriminaƟon of the

uniformly drawn states [Ishizaka and Hiroshima 2009]

ω(i)
ANB = TrBic φANBN .

▶ Success probability q of discriminaƟng between ω(i):

q =
d2

N
Fd.

▶ Suggests preƩy good measurement (PGM) as POVM.

▶ Further protocol simplificaƟon: |φ〉 = EPR⊗N

▶ We call (EPR⊗N, PGM) the standard protocol.
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ProbabilisƟc PBT

▶ ProbabilisƟc PBT yields the exact target state with success

probability pd and aborts otherwise.

▶ Extended POVM Eprob = {E(i)}Ni=0, where E
(0) corresponds to

aborƟon of the protocol.

▶ ProbabilisƟc PBT is a special case of determinisƟc PBT.

(Send random port when geƫng outcome ”0”.)

▶ Again: consider special case where |φ〉 = EPR⊗N.

▶ We call (EPR⊗N, Eprob) the EPR protocol.

(POVM Eprob is now opƟmized over.)
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ExisƟng results: opƟmal performance of PBT

▶ Standard determinisƟc protocol:

Fstdd ≥ 1− d2 − 1
N

.

[Ishizaka and Hiroshima 2008; Beigi and König 2011]

▶ Converse bound for arbitrary determinisƟc protocols:

F∗d ≤ 1− 1
4(d− 1)N2 + O(N−3). [Ishizaka 2015]

▶ Closed forms for d = 2: [Ishizaka and Hiroshima 2009]

Fstd2 = FEPR2 = 1− 3
4N

+ o(N−1)

pEPR2 ∼ 1−
( 8
πN

)−1/2
+ o(N−1/2).
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ExisƟng results: opƟmal performance of PBT

▶ PBT has a lot of inherent symmetries

−→ use representaƟon theory (RT)!

▶ Leads to exact expressions for Fd and pd in terms of RT

quanƟƟes. [Studziński et al. 2017] and [Mozrzymas et al. 2017]

▶ Our main results: AsymptoƟcs of these expressions for F∗d, F
std
d

and pEPRd to first order.

▶ This talk focuses on

▷ standard determinisƟc protocol Fstdd ;

▷ EPR probabilisƟc protocol pEPRd .
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Natural symmetries of PBT

NotaƟon: Ud … unitary group; SN … symmetric group.

PermutaƟon symmetry

Every port Bi is equally good for teleportaƟon

−→ SN-symmetry of ρBN = TrAN φANBN .

Same symmetry for POVM elements

−→ SN-acƟon on {E(i)}i.

Unitary invariance

The protocol works equally well for all input states

−→ Ud-symmetry of ρBN .
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Natural symmetries of PBT

ProposiƟon: Symmetries of PBT

Every PBT protocol Λ can be symmetrized to a protocol Λs with

F(Λs, id) ≥ F(Λ, id), saƟsfying:

▶ Resource state φANBN is a purificaƟon of a symmetric Werner

state, i.e., invariant under U⊗N
A ⊗ U⊗N

B and SN.

▶ SN acts on {E(i)}i, and each E(i) is invariant under UA0 ⊗ U⊗N
A .

▶ Λs is unitarily covariant.

”Folklore” results, proofs in C. Majenz’s PhD thesis and our paper.
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Schur-Weyl duality

▶ Resource state φANBN invariant under acƟon of Ud SN

−→ structure determined by Schur-Weyl duality.

▶ Group acƟons:

|ψ1〉 ⊗ . . .⊗ |ψN〉
π∈SN7−−−−→ |ψπ−1(1)〉 ⊗ . . .⊗ |ψπ−1(N)〉

|ψ1〉 ⊗ . . .⊗ |ψN〉
U∈Ud7−−−−→ U|ψ1〉 ⊗ . . .⊗ U|ψN〉

▶ Schur-Weyl decomposiƟon:

(Cd)⊗N ∼=
⊕
λ⊢d N

[λ]⊗ Vλ

▶ λ `d N: Young diagram with N boxes and at most d rows.

▶ Irreducible representaƟons:

▷ [λ] is an irrep of SN with dim[λ] = dλ.

▷ Vλ is an irrep of Ud with dimVλ = md,λ.
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Exact expressions for Fd and pd using RT

[Studziński et al. 2017; Mozrzymas et al. 2017]

Standard determinisƟc protocol

Fstdd =
1

dN−2

∑
α ⊢d N−1

( ∑
μ=α+□

√
dμmd,μ

)2

,

where μ = α +□ denotes a Young diagram μ `d N obtained from

α `d N− 1 by adding a single box (!).

EPR probabilisƟc protocol

pEPRd =
1
dN

∑
α ⊢d N−1

m2
α
dμ∗
mμ∗

where μ∗ is the Young diagram obtained from α `d N− 1 by adding a single

box such that Nmd,μdα
mαdμ

is maximal.
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Main results

Main result 1: standard determinisƟc PBT

For determinisƟc PBT using PGM and EPR pairs, we prove:

Fstdd = 1− d2 − 1
4N

+ O(N−3/2+δ) for any δ > 0.

▶ Recovers qubit result Fstd2 = 1− 3
4N

+ o(N−1).

▶ Shows that Fstdd ≥ 1− d2 − 1
N

is not Ɵght, confirming numerical

evidence.
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Main results

Main result 2: probabilisƟc PBT

For probabilisƟc PBT using EPR, we prove:

pEPRd = 1−
√

d
N− 1

E[λmax(G)] + o(N−1),

where G is a Gaussian unitary, i.e, a HermiƟan, traceless random

d× dmatrix with independent Gaussian RVs as entries.

▶ For qubits (i.e., d = 2 and G is a 2× 2 matrix):

E[λmax(G)] = 2π−1/2.

▶ Hence, our result ”corrects” the qubit result

pEPR2 ∼ 1−
√

8
πN + o(N−1/2). [Ishizaka and Hiroshima 2009]

▶ Arbitrary d: use bounds on E[λmax(G)].
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Standard determinisƟc protocol
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EPR probabilisƟc protocol
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Spectrum esƟmaƟon & random matrix theory

▶ Recall Schur-Weyl duality:

(Cd)⊗N ∼=
⊕
λ⊢d N

[λ]⊗ Vλ.

▶ Consider the projecƟve measurement {Pλ}λ⊢d N, where Pλ is the

orthogonal projecƟon onto [λ]⊗ Vλ.

▶ IntuiƟon: {Pλ}λ⊢d N respects the Ud- and SN-symmetries of the

spectrum esƟmaƟon problem.

Spectrum esƟmaƟon [Keyl and Werner 2001]

Let YN denote the outcome of the measurement {Pλ}λ⊢d N applied to

ρ⊗N where ρ is a state. Then, as N → ∞,

1
NYN

D−−→ spec(ρ).
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Spectrum esƟmaƟon & random matrix theory

▶ For the completely mixed state τ = 1
d1, the corresponding

probability distribuƟon is called Schur-Weyl distribuƟon:

pd,N(λ) = Tr(Pλτ⊗N) =
1
dN

dλmd,λ.

▶ Spectrum esƟmaƟon: For the RV YτN obtained from applying the

measurement {Pλ}λ⊢d N to τ, we have

1
NY

τ
N

D−−→ (1/d, . . . , 1/d).

▶ What about a ”central limit theorem” version of this describing

fluctuaƟons of Young diagrams?
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Spectrum esƟmaƟon & random matrix theory

▶ To make this exact, define the centered and normalized RV

AN =
λN − (N/d, . . . ,N/d)√

N/d

where λN ∼ pd,N takes values in Young diagrams {λ `d N}.

▶ LetM be the Gaussian unitary ensemble GUE(d): a HermiƟan

random matrix whose entries are independent Gaussian RVs.

(df: exp(− 1
2 TrH

2) where H is a HermiƟan matrix-valued RV.)

▶ DefineM0 = M− Tr(M)
d 1, called the traceless Gaussian unitary

ensemble GUE0(d).
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Main technical result

FluctuaƟons of Schur-Weyl distribuƟon [Johansson 2001]

For the RV AN =
√

d
N(λN − (N/d, . . . ,N/d)),

AN
D−−→ spec(G),

where G ∼ GUE0(d).

Note that spec(G) d→∞−−−→a.s. Wigner’s semicircle law.

Main technical result (informal)

Strengthening of Johansson’s result:

E[g(AN)]
n→∞−−−→ E[g(spec(G))]

for ”suitable” funcƟons g.
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ApplicaƟon of Johansson strengthening

▶ Proof idea of asymptoƟcs for standard and EPR protocol:

apply convergence of expectaƟon values to exact RT formulas by

rewriƟng them as expectaƟon values over Schur-Weyl

distribuƟon.

▶ Main principle: CompuƟng expectaƟon values of (funcƟons of)

GUE-distributed matrices is much easier!

▶ Example: probabilisƟc PBT

pEPRd =
1
dN

∑
α ⊢d N−1

m2
α
dμ∗
mμ∗

▶ Rewrite pEPRd =
N
d
Eα[(α1 + d)−1] and apply technical result.
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More results in the paper

Main result 3: fully opƟmized determinisƟc PBT

▶ Achievability bound:

F∗d ≥ 1− d5 + O(d9/2)

4
√
2N2

+ O(N−3).

▶ Converse bound:

F∗d ≤ 1− d2 − 1
16N2 .

▶ AsymptoƟcs of opƟmal determinisƟc PBT are given by

F∗d = 1− Θ(N−2).
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Summary

▶ We discussed two variants of port-based teleportaƟon (PBT):

▷ determinisƟc PBT with entanglement fidelity Fd;

▷ probabilisƟc PBT with success probability pd.

▶ Inherent symmetries: closed representaƟon-theoreƟc formulas

for Fd and pd. [Studziński et al. 2017; Mozrzymas et al. 2017]

▶ Standard protocols: use connecƟon between Young diagrams

and GUE to determine asymptoƟcs.

▶ We also determine asymptoƟcs of fully opƟmized case using

different proof technique.
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Open problems

ConnecƟon between Schur-Weyl distribuƟon and GUE seems very

fruiƞul: get asymptoƟcs for other ”symmetric” tasks?

For the opƟmal determinisƟc case, achievability bound is opƟmal in

N, but not in d-dependence: improvement?

We considered natural limit of fixed d and N → ∞.

What about the limit N, d → ∞ with N/d2 = const?
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