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Motivation

Distinguishability plays a central role in all sciences

Repeated trials of an experiment allow for increasing the
distinguishability between two different hypotheses

If the two different hypotheses are relatively distinguishable, then
fewer trials are needed

So distinguishability is a resource in this sense because it limits the
amount of effort needed to make decisions

Statistical and, more generally, quantum hypothesis testing provide a
rigorous setting for studying distinguishability
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Main message

Distinguishability is a resource that can be quantified and
interconverted (resource theory of asymmetric distinguishability)
(see also [Mat10, Mat11] for earlier work)

Fundamental unit is the bit of asymmetric distinguishability

Objects to manipulate include state boxes, channel boxes, and
quantum strategy (or comb) boxes, and basic tasks include
distillation, dilution, and box transformations

One-shot tasks give operational meaning to one-shot relative
entropies, like non-smooth and smooth min- and max-relative entropy

Key Result: Q. relative entropy is fundamental exchange rate

Key Observation: Concepts underpin many other resource theories
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FAQ

I don’t see why the resource-theoretic viewpoint is useful. Is it simply
because resource theories are currently in fashion?

No. We have made important progress on the sequential quantum Stein’s
lemma for quantum channels, and it is unclear whether this would have
occurred without the resource-theoretic perspective.
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Resource theory of asymmetric distinguishability

Basic object to manipulate is a “state box,” consisting of two
quantum states ρ and σ:

(ρ, σ)

Interpretation: quantum system prepared in an unknown state
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Free operations

What can you do with a state box?

Any quantum channel N is allowed for free

You can then convert one state box to another one as follows:

(ρ, σ) → (N (ρ),N (σ))

Some channels are reversible, i.e., isometric channels U or those that
append a common quantum state τ :

(ρ, σ) ↔ (U(ρ),U(σ)) ↔ (ρ⊗ τ, σ ⊗ τ)
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Exact box transformation problem

Fundamental question of the resource theory

Given state boxes (ρ, σ) and (τ, ω), is there a quantum channel N
that takes the state box (ρ, σ) to the state box (τ, ω)?

Equivalently, is there a quantum channel N such that

N (ρ) = τ, N (σ) = ω?

This question has a long history both in classical and quantum
information theory [Bla53, AU80, CJW04, MOA11, Bus12, HJRW12,
BDS14, BaHN+15, Ren16, BD16, Bus16, GJB+18, Bus17, BG17]

It can be solved by semi-definite programming (efficient algorithm)

It is also known as quantum relative majorization [BG17] and some
entropic characterizations are known
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Approximate box transformation problem

Performing exact transformations can be challenging in practice.

Moreover, if the transformation were performed with small error, this
would not be noticeable in practice

Motivates a relaxation of the previous problem

More fundamental question of the resource theory

Given state boxes (ρ, σ) and (τ, ω), how well can a quantum
channel N take the state box (ρ, σ) to (τ, ω) approximately?

Specifically, how small can the following error ε be for some quantum
channel N , such that

N (ρ) ≈ε τ, and N (σ) = ω ?

Allowing error in conversion of first state but not in second state is
why this is the resource theory of asymmetric distinguishability
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Approximate box transformation problem (ctd.)

We quantify error in terms of normalized trace distance, due to its
strong operational meaning in terms of absolute deviation of
observable probabilities in any quantum-physical experiment:

ζ1 ≈ε ζ2 ⇐⇒ 1

2
‖ζ1 − ζ2‖1 ≤ ε

Then approx. box transformation is the following optimization:

ε((ρ, σ)→ (τ, ω)) := inf
N∈CPTP

{ε ∈ [0, 1] : N (ρ) ≈ε τ, N (σ) = ω} ,

This can be written as a semi-definite program:

inf
YB ,J

N
RB≥0

{
Tr[YB ] : YB ≥ τB − TrR [ρTR J

N
RB ],

TrR [σTR J
N
RB ] = ωB , TrB [JNRB ] = IR

}
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Asymptotic approximate box transformations

Let’s think like Claude Shannon and Charlie Bennett...

(How ’bout that Shannon Award!!!)

Let n,m ∈ Z+ and ε ∈ [0, 1].

An (n,m, ε) box transformation protocol for the boxes (ρ, σ) and
(τ, ω) consists of a channel N (n) such that

N (n)(ρ⊗n) ≈ε τ⊗m, N (n)(σ⊗n) = ω⊗m.

A rate R is achievable if for all ε ∈ (0, 1], δ > 0, and sufficiently
large n, there exists an (n, n[R − δ], ε) box transformation protocol.

Optimal box transformation rate R((ρ, σ)→ (τ, ω)) is equal to the
supremum of all achievable rates.
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Solution of asymptotic box transformation problem

Result: Quantum relative entropy is the fundamental exchange rate

Given state boxes (ρ, σ) and (τ, ω), the optimal box transformation rate is
equal to the ratio of quantum relative entropies:

R((ρ, σ)→ (τ, ω)) =
D(ρ‖σ)

D(τ‖ω)

where D(ρ‖σ) := Tr[ρ[log2 ρ− log2 σ]] [Ume62].

Highlights the fundamental role of quantum relative entropy in the
resource theory of asymmetric distinguishability

Observation: Resource theory is asymptotically reversible

See also [BST19]
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Solution of asymptotic box transformation problem (ctd.)

How to prove this? Inspired by entanglement theory
[BBPS96, BDSW96], break task into two: distillation and dilution

For distillation, convert (ρ⊗n, σ⊗n) to fiducial currency (bits of
asymmetric distinguishability), & for dilution, convert these to
(τ⊗m, ω⊗m). This is the main idea behind the achievability part.

For the (strong) converse part, use a pseudo-continuity bound for
sandwiched Rényi relative entropy and data processing:

Pseudo-continuity bound

Let ρ0, ρ1, and σ be states such that supp(ρ0) ⊆ supp(σ). Fix
α ∈ (1/2, 1) and β ≡ β(α) := α/ (2α− 1) > 1. Then

D̃β(ρ0‖σ)− D̃α(ρ1‖σ) ≥ α

1− α
log F (ρ0, ρ1).
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Bits of asymmetric distinguishability

We introduce the fundamental unit called “bit of asymmetric
distinguishability”:

(|0〉〈0|, π) where π = I/2

m bits of asymmetric distinguishability are encoded in the box

(|0〉〈0|⊗m, π⊗m)

Common quantum channels lead to the following equivalence:

(|0〉〈0|⊗m, π⊗m) ↔ (|0〉〈0|, π2m),

where π2m = 1
2m |0〉〈0|+

(
1− 1

2m

)
|1〉〈1|.
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Bits of asymmetric distinguishability (ctd.)

More generally, log2 M bits of asymmetric distinguishability are encoded in
the following state box:

(|0〉〈0|, πM)

where

πM :=
1

M
|0〉〈0|+

(
1− 1

M

)
|1〉〈1|.
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Exact distinguishability distillation

Goal: distill from state box (ρ, σ) as many exact bits of AD as possible

That is, we want to perform the conversion:

(ρ, σ)→ (|0〉〈0|, πM)

with M as large as possible.

Formally, one-shot exact distillable distinguishability is given by

D0
d(ρ, σ) := log2 sup

P∈CPTP
{M : P(ρ) = |0〉〈0|, P(σ) = πM}

Key Result: It is equal to the min-relative entropy of [Dat09]:

D0
d(ρ, σ) = Dmin(ρ‖σ)

where Dmin(ρ‖σ) := − log2 Tr[Πρσ]
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Exact distinguishability dilution

Goal: prepare state box (ρ, σ) with as few exact bits of AD as possible

That is, we want to perform the conversion:

(|0〉〈0|, πM)→ (ρ, σ)

with M as small as possible.

Formally, one-shot exact distinguishability cost is given by

D0
c (ρ, σ) := log2 inf

P∈CPTP
{M : P(|0〉〈0|) = ρ, P(πM) = σ}

Key Result: It is equal to the max-relative entropy of [Dat09]:

D0
c (ρ, σ) = Dmax(ρ‖σ)

where Dmax(ρ‖σ) := inf
{
λ ≥ 0 : ρ ≤ 2λσ

}
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Approximate distinguishability distillation

Goal: distill from state box (ρ, σ) as many approx. bits of AD as
possible

That is, we want to perform the conversion:

(ρ, σ)→ (0̃ε, πM)

with M as large as possible and 0̃ε ≈ε |0〉〈0|.
Formally, one-shot distillable distinguishability is given by

Dε
d(ρ, σ) := log2 sup

P∈CPTP
{M : P(ρ) ≈ε |0〉〈0|, P(σ) = πM}

Equal to smooth min-relative entropy of [BD10, BD11, WR12]:

Dε
d(ρ, σ) = Dε

min(ρ‖σ)

where Dε
min(ρ‖σ) := − log2 infΛ≥0{Tr[Λσ] : Λ ≤ I ,Tr[Λρ] ≥ 1− ε}
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Approximate distinguishability dilution

Goal: prepare state box (ρ, σ) approximately using as few bits of AD
as possible

That is, we want to perform the conversion:

(|0〉〈0|, πM)→ (ρ̃, σ)

with M as small as possible and ρ̃ ≈ε ρ.

Formally, one-shot distinguishability cost is given by

Dε
c (ρ, σ) := log2 inf

P∈CPTP
{M : P(|0〉〈0|) ≈ε ρ, P(πM) = σ}

Key Result: It is equal to smooth max-relative entropy of [Dat09]:

Dε
c (ρ, σ) = Dε

max(ρ‖σ)

where Dε
max(ρ‖σ) := inf ρ̃≈ερDmax(ρ̃‖σ).
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Asymptotics

Asymptotic distillable distinguishability:

Dd(ρ, σ) := lim
ε→0

lim
n→∞

1

n
Dε
d(ρ⊗n, σ⊗n) = D(ρ‖σ)

Last equality follows from quantum Stein’s lemma [HP91]
(refinements available in [ON00, Nag06, Hay07, TH13, Li14, MO15])

Asymptotic distinguishability cost:

Dc(ρ, σ) := lim
ε→0

lim
n→∞

1

n
Dε
c (ρ⊗n, σ⊗n) = D(ρ‖σ)

Last equality follows from asymptotic equipartition property [TCR09]
(refinements available in [TH13]). Open questions about error and
strong converse exponents

Observation: Resource theory is asymptotically reversible
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Resource theory for channels

We can generalize the resource theory of asymmetric distinguishability
to quantum channels [WW19b]

The basic object to manipulate is a channel box, consisting of two
channels N and M:

(N ,M)

Quantum channel boxes have inputs and outputs, and so the ways
that we can manipulate them are richer than for state boxes

Tasks for the state theory have generalizations to the channel theory
(distillation, dilution, channel box transformations)

Mark M. Wilde (LSU) 20 / 51



Free operations are quantum superchannels

Most general physical transformation of a quantum channel is a
superchannel [CDP08], which accepts as input a quantum channel
and outputs a quantum channel

The superchannel Θ(A→B)→(C→D) takes as input a quantum channel
NA→B and outputs a quantum channel KC→D , which we denote by

Θ(A→B)→(C→D)(NA→B) = KC→D .
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Physical realizations of quantum superchannels

Superchannel has a physical realization in terms of pre- and
post-processing quantum channels [CDP08] (see also [Gou18]):

Θ(A→B)→(C→D)(NA→B) = DBM→D ◦ NA→B ◦ EC→AM ,

where EC→AM and DBM→D are pre- and post-processing channels

C D

BNA

D
M

E
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Exact channel box transformation problem

Fundamental question [Gou18]

Given channel boxes (N ,M) and (K,L), is there a quantum
superchannel Θ that takes the channel box (N ,M) to the channel
box (K,L)?

Specifically, is there a quantum superchannel Θ such that

Θ(N ) = K, Θ(M) = L?

This was called “comparison of channels” in [Gou18]

[Gou18] showed that it can be solved by means of a semi-definite
program and characterized by the extended conditional min-entropy
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Approximate channel box transformation problem

Fundamental question of the resource theory [WW19b]

Given channel boxes (N ,M) and (K,L), how well can a quantum
superchannel Θ take the channel box (N ,M) to the channel box
(K,L) approximately?

Specifically, how small can the following error ε be for some
superchannel Θ such that

Θ(N ) ≈ε K, and Θ(M) = L ?
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Approximate channel box transformation problem (ctd.)

Quantify error in terms of normalized diamond distance [Kit97],
due to its strong operational meaning in terms of absolute deviation
of observable probabilities in any quantum-physical experiment:

N1 ≈ε N2 ⇐⇒ 1

2
‖N1 −N2‖� ≤ ε

Then approx. channel box transformation is the optimization

ε((N ,M)→ (K,L)) := inf
Θ∈SC

{ε ∈ [0, 1] : Θ(N ) ≈ε K, Θ(M) = L} ,

This can be written as a semi-definite program:

inf
ZCD , ΓΘ

CBAD≥0
‖TrD [ZCD ]‖∞ , subject to

ZCD ≥ ΓKCD − TrAB [(ΓNAB)TΓΘ
CBAD ], ΓLCD = TrAB [(ΓMAB)TΓΘ

CBAD ],

ΓΘ
CB = ICB , ΓΘ

CBA = ΓΘ
CA ⊗ πB ,
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Asymptotic parallel channel box transformation

Again think like Claude Shannon and Charlie Bennett...

Let n,m ∈ Z+ and ε ∈ [0, 1].

An (n,m, ε) parallel channel box transformation protocol for the
channel boxes (N ,M) and (K,L) consists of a superchannel Θ(n)

such that

Θ(n)(N⊗n) ≈ε K⊗m, Θ(n)(M⊗n) = L⊗m.

A rate R is achievable if for all ε ∈ (0, 1], δ > 0, and sufficiently
large n, there exists an (n, n[R − δ], ε) parallel channel box
transformation protocol.

Optimal parallel channel box transformation rate
Rp((N ,M)→ (K,L)) is equal to supremum of all achievable rates.

Mark M. Wilde (LSU) 26 / 51



Partial solution

Solution for classical–quantum and environment-seizable [BHKW18]
channels in terms of channel relative entropy [CMW16, LKDW18]

Result: Quantum relative entropy is the fundamental exchange rate

Given classical–quantum or environment-seizable channel boxes (N ,M)
and (K,L), the optimal parallel channel box transformation rate is equal
to the ratio of channel relative entropies:

Rp((N ,M)→ (K,L)) =
D(N‖M)

D(K‖L)

where D(N‖M) := supψRA
D(NA→B(ψRA)‖MA→B(ψRA))

[CMW16, LKDW18].

(Parallel) resource theory asymptotically reversible for these channels
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Partial solution (ctd.)

How to prove this? Again break task into two: distillation and dilution

For distillation, convert (N⊗n,M⊗n) to bits of asymmetric
distinguishability, & for dilution, convert these to (K⊗m,L⊗m). This
solves achievability part for special channels.

For the (strong) converse part, use a pseudo-continuity bound for
sandwiched Rényi relative entropy and data processing:

Pseudo-continuity bound

Let N 0
A→B , N 1

A→B , and MA→B be channels such that
Dmax(N 0‖M) <∞. Then for α ∈ (1/2, 1) and β := α/ (2α− 1) > 1,

D̃β(N 0‖M)− D̃α(N 1‖M) ≥ α

1− α
log2 F (N 0,N 1).
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Bits of asymmetric distinguishability

Identify log2 M bits of asymmetric distinguishability as follows:

(|0〉〈0|, πM) ↔ (R|0〉〈0|,RπM )

where

πM :=
1

M
|0〉〈0|+

(
1− 1

M

)
|1〉〈1|

and Rσ(ρ) = Tr[ρ]σ is a replacer channel that replaces the input
state ρ with the state σ
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Exact distinguishability distillation

Goal: distill from box (N ,M) as many exact bits of AD as possible

That is, we want to perform the conversion:

(N ,M)→ (R|0〉〈0|,RπM )

with M as large as possible.

Formally, one-shot exact distillable distinguishability is given by

D0
d(N ,M) := log2 sup

Θ∈SC

{
M : Θ(N ) = R|0〉〈0|, Θ(M) = RπM

}
Key Result: It is equal to the channel min-relative entropy:

D0
d(N ,M) = Dmin(N‖M)

where Dmin(N‖M) := supψRA
Dmin(NA→B(ψRA)‖MA→B(ψRA)).
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Exact distinguishability dilution

Goal: prepare channel box (N ,M) with as few exact bits of AD as
possible

That is, we want to perform the conversion:

(R|0〉〈0|,RπM )→ (N ,M)

with M as small as possible.

Formally, one-shot exact distinguishability cost is given by

D0
c (N ,M) := log2 inf

Θ∈SC

{
M : N = Θ(R|0〉〈0|), M = Θ(RπM )

}
= channel max-relative entropy [CMW16, LKDW18, GFW+18]

D0
c (N ,M) = Dmax(N‖M)

where Dmax(N‖M) := supψRA
Dmax(NA→B(ψRA)‖MA→B(ψRA))
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Approximate distinguishability distillation

Goal: distill from box (N ,M) as many approx. bits of AD as possible

That is, we want to perform the conversion:

(N ,M)→ (R̃|0〉〈0|,RπM )

with M as large as possible and R̃|0〉〈0| ≈ε R|0〉〈0|.
Formally, one-shot distillable distinguishability is given by

Dε
d(N ,M) := log2 sup

Θ∈SC

{
M : Θ(N ) ≈ε R|0〉〈0|, Θ(M) = RπM

}
Equal to smooth channel min-relative entropy of [CMW16]:

Dε
d(N ,M) = Dε

min(N‖M)

where Dε
min(N‖M) := supψRA

Dε
min(NA→B(ψRA)‖MA→B(ψRA))
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Approximate distinguishability dilution

Goal: prepare box (N ,M) approximately using as few bits of AD as
possible

That is, we want to perform the conversion:

(R|0〉〈0|,RπM )→ (Ñ ,M)

with M as small as possible and Ñ ≈ε N .

Formally, one-shot distinguishability cost is given by

Dε
c (N ,M) := log2 inf

Θ∈SC

{
M : N ≈ε Θ(R|0〉〈0|), M = Θ(RπM )

}
Equal to smooth channel max-relative entropy of [GFW+18]:

Dε
c (N ,M) = Dε

max(N‖M)

where Dε
max(N‖M) := infÑ≈εN Dmax(Ñ ‖M).
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Asymptotics (parallel case)

Asymptotic parallel distillable distinguishability:

Dd(N ,M) := lim
ε→0

lim
n→∞

1

n
Dε
d(N⊗n,M⊗n) = lim

m→∞

1

m
D(N‖M)

Follows essentially from quantum Stein’s lemma [HP91] and converse
bounds for Dε

min [WR12, MW14, KW17]

Asymptotic parallel distinguishability cost:

Dc(ρ, σ) := lim
ε→0

lim
n→∞

1

n
Dε
c (N⊗n,M⊗n) ≥ lim

m→∞

1

m
D(N‖M)

Last equality is operational (cost ≥ distillability). Whether equality
holds is related to open question of [LW19]

Resource theory is asymptotically reversible for classical–quantum and
environment-seizable channel boxes
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Sequential setting

(n,m, ε) sequential channel box transformation protocol

Goal is to convert n-round sequential channel box (N (n),M(n)) to
m-round sequential channel box (K(m),L(m)) by means of a physical
transformation Θ(n→m) (quantum strategy [GW07] or comb [CDP09]),
such that

Θ(n→m)(N (n)) ≈ε K(m), Θ(n→m)(M(n)) = L(m)
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Depiction of condition Θ(n→m)(N (n)) ≈ε K(m)

D3C3C2C1 D2D1

A1 A2
R’1 R’2 R’3

F5 F6

R4 R5

A2B1NA1 B2

F2

N

F3

N

F 4R1 R2F1

A3 B3

R 3

D3C3C2C1 D2D1

A1 A2
R’1 R’2 R’3

K K K

≈

Observable probabilities between Θ(n→m)(N (n)) and K(m) deviate by no
more than ε when paired up with an arbitrary co-strategy [GW07] or
tester [CDP09] (operational definition of strategy distance
[GW07, CDP09])
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Depiction of condition Θ(n→m)(M(n)) = L(m)

D3C3C2C1 D2D1

A1 A2
R’1 R’2 R’3

F5 F6

R4 R5

A2B1MA1 B2

F2

M

F3

M

F 4R1 R2F1

A3 B3

R 3

D3C3C2C1 D2D1

A1 A2
R’1 R’2 R’3

L L L

=

Observable probabilities between Θ(n→m)(N (n)) and K(m) do not deviate
at all when paired up w/ an arbitrary co-strategy [GW07] or
tester [CDP09] (equivalent to Choi states being equal [GW07, CDP09])
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Exact sequential distinguishability dilution

Goal: Prepare sequential channel box (N (n),M(n)) with as few bits
of AD as possible

Formally, exact distinguishability cost is given by

D0
c (N (n),M(n)) := inf

Θ(1→n)

{
log2 M : N (n) = Θ(1→n)(R|0〉〈0|C→D),

M(n) = Θ(1→n)(RπMC→D)

}
.

Key result: Using “bootstrapping” method of [GFW+18], normalized
cost equal to channel max-relative entropy for all n ≥ 1:

1

n
D0
c (N (n),M(n)) = Dmax(N‖M)

Implies that asymptotic exact sequential cost is

D0
c (N ,M) := lim

n→∞

1

n
D0
c (N (n),M(n)) = Dmax(N‖M)
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Approximate distinguishability distillation

Goal: Distill from sequential channel box (N (n),M(n)) as many
approx. bits of AD as possible

Formally, approx. distillable distinguishability is given by

Dε
d(N (n),M(n)) := sup

Θ(n→1)

{
log2 M : Θ(n→1)(N (n)) ≈ε R|0〉〈0|C→D ,

Θ(n→1)(M(n)) = RπMC→D

}
.

Key result: Using different “bootstrapping” method of
[BHLS03, NGP15, GFW+18], asymptotic sequential distillable
distinguishability equals amortized channel relative entropy
[BHKW18]:

Dd(N ,M) := lim
ε→0

lim
n→∞

1

n
Dε
d(N (n),M(n)) = DA(N‖M), with

DA(N‖M) := sup
ρRA,σRA

D(NA→B(ρRA)‖MA→B(σRA))− D(ρRA‖σRA)

Can also be understood as solution of Stein’s lemma for quantum
channels in sequential setting
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How to achieve amortized channel divergence?

Idea: Use a block adaptive protocol

1 In a preliminary round, distill bits of AD at rate
D(NA→B(ψRA)‖MA→B(ψRA)) for some state ψRA

2 Then dilute these bits of AD to state box (ρ⊗nRA, σ
⊗n
RA)

3 Now send states through channels to realize state box
([NA→B(ρRA)]⊗n, [MA→B(σRA)]⊗n)

4 Distill bits of AD at rate D(NA→B(ρRA)‖MA→B(σRA))

5 Set aside fraction D(NA→B(ρRA)‖MA→B(σRA))− D(ρRA‖σRA) and
reinvest fraction D(ρRA‖σRA) for next round

6 Repeat 2-5 many times

7 Net rate of bits of AD produced is then
D(NA→B(ρRA)‖MA→B(σRA))− D(ρRA‖σRA)
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Conclusion and future directions

Resource theory of asymmetric distinguishability developed for states
[WW19a], channels [WW19b], and strategies/combs [WW19b]

Strong links to other resource theories, as discussed in [WW19a]

Many open questions about error and strong converse exponents,
second-order expansions, etc.

Interesting open question: Is there a channel box (N ,M) such that

DA(N‖M) > lim
m→∞

1

m
D(N⊗m‖M⊗m) ?

If so, the implication is that a sequential strategy can strictly
outperform a parallel strategy in asymmetric quantum channel
discrimination. Alternatively, is there equality above for all channels?
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