
A Bayesian framework to address limitations of
Mendelian Randomization

Xin He
Department of Human Genetics

University of Chicago

February 5, 2019

1 / 26



Inferring trait relations from GWAS

GWAS of thousands of phenotypes and even more molecular and cellular
level traits have been performed. Can we use them to infer relationship
among traits?
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Mendelian Randomization (MR) is a general framework of
causal inference

MR is similar to Randomized Clinical Trial (RCT): the SNP acts to
randomize samples. We compare the disease risks in the two groups
defined by the two alleles.
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MR with single Instrument Variable (IV)

Estimator of causal effect γ:

βY = γβm ⇒ γ̂ =
β̂Y

β̂M
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MR with multiple IVs

To estimate γ, regression of βY against βM :

β̂Y ,i = γβ̂M,i

Often the contribution of SNPs are weighted: IVW estimator.
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Example of MR analysis: LDL → Coronary Artery Disease
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MR makes strong assumptions
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Problems of the three assumptions

There is often uncertainty of identifying variants acting on M.

A confounder may be a (heritable) biological process that acts on
both M and Y .

Horizontal pleiotropy can be common.
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Heritable confounders lead to violation of MR assumption

Often MR researchers assume confounders are related to environmental
exposure. However, confounders can be biological factors with genetic
basis.

Variants of blood pressure are not valid IVs if they act on any of these
processes.

9 / 26



Heritable confounders lead to violation of MR assumption

Often MR researchers assume confounders are related to environmental
exposure. However, confounders can be biological factors with genetic
basis.

Variants of blood pressure are not valid IVs if they act on any of these
processes.

9 / 26



A small number of invalid IVs driven by a confounder can
lead to false findings by MR

Only 15% of shared SNPs can drive significant correlation in MR.
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A unified model that addresses all three limitations

Using genomewide summary statistics and model the uncertainty of
IV: use a sparse prior for the true effects of a variant on mediator.

Allow some variants of M to act on a shared factor (confounder).

Introducing a sparse random effect of IV on Y not explained by the
mediator or the shared factor.
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Modeling confounder in a non-causal model

Even when M does not causally act on Y , it is possible that some shared
factor acts on both. We allow a small percent of variants of M to act on
this shared factor.
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Modeling shared factor as a mixture of genetic mechanisms

For generality, we allow both causal effect and a shared factor between M
and Y :

βY ,i = γβM,i

βY ,i = (γ + η)βM,i

Whether variant i acts on the shared factor or not is denoted as Zi , and
Zi ∼ Bern(q),
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Modeling uncertainty of instruments

Our data β̂M,i and β̂Y ,i are related to the true effects by:

β̂M,i ∼ N(βM,i , s
2
M,i ) β̂Y ,i ∼ N(βY ,i , s

2
Y ,i )

The prior of true effect of variant i on M:

βM,i ∼ πM,0δ0 +

KM∑
k=1

πM,kN(0, σ2M,k)
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Modeling horizontal pleiotropy

βY ,i = γβM,i + θi βY ,i = (γ + η)βM,i + θi

Horizontal pleiotropy: θi ∼ πY ,0δ0 +
∑KY

k=1 πY ,kN(0, σ2Y ,k).
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Testing causality by model comparison
Compare sharing model γ = 0 vs causal model γ 6= 0:

P(β̂M , β̂Y |M) =

∫
P(β̂M , β̂Y |q, γ, η)P(q, γ, η|M)dqdγdη

At γ = 0, the model is reduced to:

βY ,i = ZiηβM,i + θi Zi ∼ Bern(q)

A proportion q of variants of M show correlated effects in Y . The prior of
q is chosen to be small (much smaller than 1).

At γ 6= 0, the model is approximately (ignoring shared factor):

βY ,i ≈ γβM,i + θi

MR-CAUSE (Causal Analysis Using Summary Effects)
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MR-CAUSE reduces false positives in simulation

The power of MR-CAUSE is comparable to existing methods.
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Application of MR-CAUSE

20 GWAS traits with summary statistics: comparison of IVW and
MR-CAUSE at FDR < 0.05.

Many pairs detected by IVW are likely false: e.g. height → 11 traits
including CAD, lipids, kidney function.
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Testing CAD → LDL cholesterol

We know that LDL → CAD risk, so the opposite direction should NOT be
causal.

IVW p value = 6× 10−6. MR-CAUSE: p = 0.11.
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A small number of loci drive correlation of effect sizes

Exploration of the variants acting on the shared factor may provide
insights on common biological pathways between traits.
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MR-CAUSE ranks SNPs by their contributions to model
comparison

A small number of SNPs allow us to reject the causal model.

21 / 26



How to prove causality?

Proving causality is hard, but rejecting it is “easy”:
We can reject if there is a variant with large effect on M, but not on Y
(assuming GWAS of Y is sufficiently powered).
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Summary

Current MR methods are prone to false findings due to heritable
confounders.

MR-CAUSE explicitly models the shared factors, and address other
limitations of current MR.

MR results can provide information about which variants drive genetic
sharing, and useful diagnosis for understanding the results.
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Different signatures of causal vs. non-causal relations
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