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Inferring trait relations from GWAS

@ GWAS Catalog

GWAS of thousands of phenotypes and even more molecular and cellular
among traits?

level traits have been performed. Can we use them to infer relationship
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Mendelian Randomization (MR) is a general framework of
causal inference

SNP-Risk Factor
Association . _______ ’ .

MR is similar to Randomized Clinical Trial (RCT): the SNP acts to
randomize samples. We compare the disease risks in the two groups
defined by the two alleles.
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MR with single Instrument Variable (1V)
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MR with multiple Vs

Confounders

Causal / \
Model

Mediator Y Outcome
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Statistical
Associations By.i

To estimate +, regression of Sy against By:
By,i = vBm,i

Often the contribution of SNPs are weighted: IVW estimator.
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Example of MR analysis: LDL — Coronary Artery Disease

Association with
Coronary Artery Disease
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MR makes strong assumptions

Confounders
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® G causally affects M.
® G does not affect confounders.

® G does not affect Y through any other pathways.
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Problems of the three assumptions

Confounders

/
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@ There is often uncertainty of identifying variants acting on M.

@ A confounder may be a (heritable) biological process that acts on
both M and Y.

@ Horizontal pleiotropy can be common.
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Heritable confounders lead to violation of MR assumption

Often MR researchers assume confounders are related to environmental

exposure. However, confounders can be biological factors with genetic
basis.

Blood pressure — — — > Type 2 diabetes



Heritable confounders lead to violation of MR assumption

Often MR researchers assume confounders are related to environmental

exposure. However, confounders can be biological factors with genetic
basis.

Blood pressure — — — > Type 2 diabetes
Body mass index
Insulin

Inflammation pathway

Many more ...

Variants of blood pressure are not valid IVs if they act on any of these
processes.
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A small number of invalid IVs driven by a confounder can
lead to false findings by MR
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Only 15% of shared SNPs can drive significant correlation in MR.
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A unified model that addresses all three limitations

Confounders
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@ Using genomewide summary statistics and model the uncertainty of
IV: use a sparse prior for the true effects of a variant on mediator.

@ Allow some variants of M to act on a shared factor (confounder).

@ Introducing a sparse random effect of IV on Y not explained by the
mediator or the shared factor.

11/26



Modeling confounder in a non-causal model

Even when M does not causally act on Y, it is possible that some shared
factor acts on both. We allow a small percent of variants of M to act on
this shared factor.
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Modeling shared factor as a mixture of genetic mechanisms

For generality, we allow both causal effect and a shared factor between M
and Y:

G; acts directly on M
probability 1 — g
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Modeling shared factor as a mixture of genetic mechanisms

For generality, we allow both causal effect and a shared factor between M

and Y:

G; acts directly on M
probability 1 — g
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G; acts on M through confounder
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Modeling shared factor as a mixture of genetic mechanisms

For generality, we allow both causal effect and a shared factor between M
and Y:

G; acts directly on M G; acts on M through confounder
probability 1 — g probability g
Confounder Confounder
) C n C 9
PN 7N\
G — Mediator 7 _ Outcome G: Mediator 7 _ Outcome
M Y M Y
By.,i =VBm,i By.,i = (v +n0)Bm,i

Whether variant i acts on the shared factor or not is denoted as Z;, and
Z; ~ Bern(q),
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Modeling uncertainty of instruments

Our data BMJ and By,,- are related to the true effects by:

Bui~ NBmissw;) By~ N(Byisy)

The prior of true effect of variant i on M:

Km

Bui ~ mmodo + Y mm kN0, 05 1)
k=1
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Modeling horizontal pleiotropy

Gj acts on M through confounder

G; acts directly on M ) .
With probability g

With probability 1 — g

v N

G—»M—»

By.,i=vBm,i + 0 By.i=(v+n)Bm,i+0i

Horizontal pleiotropy: 0; ~ my ¢dg + Z,’gl Ty «N(O, a%,’k).
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Testing causality by model comparison
Compare sharing model v = 0 vs causal model v # 0:

P(BM;BY“W):/'D(BM7/§Y|Q7’Y;U)P(qa%mM)dqd’Yd"?
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Testing causality by model comparison
Compare sharing model v = 0 vs causal model v # 0:

P(BM;BY“W):/P(BM7/3Y|Q7%U)P(qa%mM)dqd’Yd??

At v = 0, the model is reduced to:

By.i = ZinPm,i + 0i Z; ~ Bern(q)

A proportion g of variants of M show correlated effects in Y. The prior of
q is chosen to be small (much smaller than 1).
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Testing causality by model comparison
Compare sharing model v = 0 vs causal model v # 0:

P(BM;BY“W):/P(BM7/3Y|Q7%U)P(qa%mM)dqd’Yd"?

At v = 0, the model is reduced to:
By.i = ZinPm,i + 0i Z; ~ Bern(q)

A proportion g of variants of M show correlated effects in Y. The prior of
q is chosen to be small (much smaller than 1).

At v # 0, the model is approximately (ignoring shared factor):

By.i ~ vBm,i + 0;

MR-CAUSE (Causal Analysis Using Summary Effects) J
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MR-CAUSE reduces false positives in simulation
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The power of MR-CAUSE is comparable to existing methods.
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Application of MR-CAUSE

20 GWAS traits with summary statistics: comparison of IVW and
MR-CAUSE at FDR < 0.05.

MAP —> Stroke

IVW MR-CAUSE

Many pairs detected by IVW are likely false: e.g. height — 11 traits
including CAD, lipids, kidney function.
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Testing CAD — LDL cholesterol

We know that LDL — CAD risk, so the opposite direction should NOT be
causal.
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IVW p value = 6 x 107°. MR-CAUSE: p = 0.11.
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A small number of loci drive correlation of effect sizes
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Exploration of the variants acting on the shared factor may provide
insights on common biological pathways between traits.
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MR-CAUSE ranks SNPs by their contributions to model

comparison
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A small number of SNPs allow us to reject the causal model.
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How to prove causality?

Proving causality is hard, but rejecting it is “easy”:
We can reject if there is a variant with large effect on M, but not on Y
(assuming GWAS of Y is sufficiently powered).
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Summary

@ Current MR methods are prone to false findings due to heritable
confounders.

o MR-CAUSE explicitly models the shared factors, and address other
limitations of current MR.

@ MR results can provide information about which variants drive genetic
sharing, and useful diagnosis for understanding the results.
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Different signatures of causal vs. non-causal relations

Trait 2 effect size estimate

SNPs that affect trait 1 SNPs that affect both

but not trait 2: Evidence traits: If trait 1 causally
against causality affects trait 2, effect sizes
should be correlated
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