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COMBO Dataset (Wu, et al., 2011 Science)

o Cross-sectional study Of diet and stool
MicroBiOme composition (COMBO)

e Data

» 98 healthy subjects/stool samples, not

on antibiotics

> 16S rRNA gene sequences

» 87 genera appeared in at least one
sample
Nutrients (FFQ diet questionnaire) &
demographic data such as BMI

v

¢ Findings:




Hypothesis of Pathogenesis Caused by Dysbiosis

Healthy persons, each with genetic susceptibility Combi of genetic ibil
to one or more polygenic disorders and p )
in polygenic disorder
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Nonspecific environmental triggerin
factors, such as chronic infection
and unhealthy diet
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Healthy gut Subclinical dysbiotic gut Reproduction of distinct disease phenotype through
mlcrcglgta microbiota, intestinal inflammation, transplantation of the dysbiotic disease-associated gut

‘ and leaky mucosa microbiota to a genetically susceptible rodent host

Source: N Engl J Med 2016;375:2369-79



COMBO: Mediation Effect




Mediation Analysis - Structural Equation Model (SEM)

T; - Treatment, M; - Mediator, Y; - Outcome, X; - Pretreatment Variables

Mi=ao+aT;+h"X;+ Uy (1)

Yi=co+cTi +bM; +g" X + Uy (2)

By combining Eq. (1) and (2),

Yi :CO+cTi+b(ao+aTi+hTXi+U1i)+gTXi+U21-

=co+(c+ab)Ti+g" " X+ U}



Mediation Analysis - Potential Outcomes Framework

Let 7; represent the binary treatment variable
Causal Direct Effect: ¢(t) =E[Y:(1, M;(¢)|X:) - Yi(0, M;(¢)|X )]
Causal Indirect Effect: §(t) = E[Y;(¢, M;(1)|X:) - Yi(t, M;(0)| X ;)]
Necessary Assumptions:

- Stable Unit Treatment Value Assumption (SUTVA)
- Sequential Ignorability Assumption,

{Yi(t',m), Mi(t)} L Ti| X = x,

Yi(t',m) L M;(O)|T; =t, X, = x,
where 0 < Pr(T; =t|X; =x) and 0 < Pr(M;(t) =m|T; =t,X; =x) for t =0, 1.

With the necessary assumptions,

¢(t) = f E(Y:|M;, Ty, X i) [dF 1,21, , (M) = dFag im0, x, (m) | dFx, (z)

6(t)=f[IE(YZ-|Mi,Ti=l,XZ-)—IE(Yl-|MZ-,Ti=O,X,-)]dFM”ThXi(m)dei(m)



Compositional Data Analysis

Compositional data:
- Relative information

- Proportions or percentages of a whole

Unit-sum constraint: sum of proportions = 1

Euclidean Space Simplex Space
X3 3
X=(3,3,4)
L]
xTo .
X=(0.3,0.3,0.4)

Z1 1 )



Subcompositional Coherence

Principle of subcompositional coherence: analysis concerning a subset of
components must not depend on excluded components

Example: Scientists A and B record the composition of soil samples:
A records animal, vegetable, mineral, and water.

B records animal, vegetable, and mineral after drying the sample.

Both are absolutely accurate. [adapted from Aitchison, 2005]

Sample A ‘ x1 T2 T3 T4 Sample B ‘ T T2 3
1 0.1 02 01 0.6 1 0.25 050 0.25

2 02 01 02 05 2 040 0.20 0.40

3 03 03 01 03 3 043 043 0.14

Corr A ‘ x1 To T3 x4 Corr B ‘ T1 T2 T3
T 1.00 0.50 0.00 -0.98 x1 1.00 -0.57 -0.05
) 1.00 -0.87 -0.65 X9 1.00 -0.79
T3 1.00 0.19 3 1.00




Compositional Mediation Model (Sohn and Li, AOAS, accepted)

Compositional operators (Aitchison, 1986; Billheimer, et al. 2001):

T z z T
miai mrag 2 mi my
mea = ; m” = ,

% > Sk % Tk
Zj:l Mk Zj:l Mmiak Zj:l my Zj:l my

Compositional mediation model:

. Ny .
M, = (mo oa’i & hf”) Uy,
-

Yi=co+cT;+b (logM;) +g" X; +Usi, subject to1.b=0



Identification for Compositional Mediation Model

Necessary assumptions:
- SUTVA
- Sequential Ignorability Assumption

Under the potential outcomes framework

o Expected Causal Direct Effect

¢(t) = E[Yi(1, log Mi()[ X (1)) = Yi(0,log M (£)| Xi(t))]

=C
e Expected Causal Indirect Effect

6(t) = E[Yi(t,log M;(1)|Xi(t)) - Yi(t,log M:(0)| X s(t))]
= (loga)™d
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T; - Treatment, M; - Mediator, Y; - Binary outcome, X ; - Pretreatment Variables

Mi=a0+aTi+hTXi+U1i (3)

Y; = 1{Y;" >0}, where Y;" = co + cT; + bM; +g" X ; + Us; (4)

By combining Eq. (3) and (4),
Yi* =Co +CTi+b(a0+aTi +hTXi +U1i) +gTXi + Ua;

=co+(c+ab)T; +g" " X+ U}

Binary Outcome Under SEM
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Binary Outcome Under Potential Outcomes Framework

Assumptions: SUTVA, Sequential ignorability

Estimation of Causal Direct ¢ and Indirect Effects §:
e Logit Model

> Complex numerical integration required

» Odds ratios with rare outcomes: log OR¢ ~ ¢; log OR;s ~ ab

e Probit Model
_ C+f1 _ f1
C_]E{q)(\/az’bhl) (I)(\/a2b2+1)}

sefo( L) o L))

where f1 =co+aob+b(h+g)" X, and fa=co+c+aob+b(h+g)"X;

11/24



CMM for Binary Outcome (Probit Model)

Compositional mediation model for the binary outcome:
M; = (mo & aTi 7&;1 hf”) o Ui,
Yi=1{co+cT;i + bT(logM,') +g X+ Uy > 0}, subject to 1;,b=0

where U1; ~ LN(0,X) and Uz; ~ N(0,1).

Expected Causal Direct and Indirect Effects:

C(T):]E P Ct+f<(T,X¢) _ Ct’+f<(T,X~;)
Vb Sb i +1 VB i Sb g + 1

(S(T)ZE ® (IOga)Tbt+f5(7-7Xi) _® (IOga)Tbt,"'fé(T,Xi)
VBT oobp + 1 SO 5b, + 1

where fe(7,2) =co + b (logmgo + Tloga + 1% z,logh,) + g x;

fs(r,®) =co+cr+b (logmo + 30 xr logh,) + g .



Estimators for Compositional Parameters

Optimization problem in a simplex space:

n 2

(Mo,@,h1,...,hn, ) = argmin >

mg,a,h,.eSk-1 =1

Mo (mo oa’l & hf)

-1 -1 -1
mi1a, Mmoo My
moa =

Z?:l mkagl ’ Z?:l mkagl T Z?:l mkagl
[m] = (m7m>1/2 = alr(m)TN’*lalr(m)

Mp-1 )T

alr(m) = (log %,log Z—i, ...,log -

_ 1
N =T, - Elk—lllq



Estimator for Parameters in Probit Regression

Let ni =2y, — 1, zi = (1, t;,log(m;)", 2;)", and B = (co,c,b",g9")"

B= argmin{—1 S log ®(niziB) + A ,6||1} , st 1.b=0 (5)
B ni=1

Alternative optimization problem:

5 A

B = awgmin {2 (u - ZB)E + AIBI, |, st 1[b=0, (6)
where = is the n x n diagonal matrix with Z;; = & (2] 8)[2] 8" + &(niz] B7)],

Ei(mzlB) = mo(niz] B)[®(niz]B), u=ZBy + (E) '€ Z=(21,...,2.)", and
£=(&(m=z1By);s- - &1 (MmznBy))"



Numerical Algorithm

Proposed method: IRLS-CDMM

=)

1 _ _ 2
B =argmin{7\\z<‘ DV - 7)) +A||ﬁ|\1}, st. 156 =0,
¢ n 2

1 _ _ - 2
:argmin{? [z 2 - Zg))| +,\||5|\1}, st. '8 =0,
B n 2
where Z = Z(I, —t."[k) and ¢ = (0,0,1,...,1,0,...,0)7.

Algorithm: IRLS-CDMM with Augmented Lagrangian Method

Step 1. Initialize 89, o(©
Step 2. Update /3’](.2*1) until convergence

Step 3. Update 21 and w'“*?) by minimizing X7, ¢(n:z] 3)

Step 4. Update a(F*V




Debiased Estimator & Its Asymptotic Convergence

Debiased Estimator of (6):
U S I
Bap =B+ ;MZTE(“ - ZB),

where M = (I, —t"[k)M and M = (my,...,m,)" is a solution of the
convex problem (Javanmard and Montanari, 2014; Shi, et. al., 2016):

minm]Sm; st ||Smy - (I, - e /k)ejllo <7, j=1,...,p,

where e; is the 4" natural basis and ~ is some constant.

Theorem: For an s-sparse (3, under some regularity conditions,

Va(Bg-B)=R+A, E(RZ)=0, [Alew—0
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Inference

Null Hypothesis for the expected causal direct and indirect effects:
H()IC(T):O VS. leg(T)th.
Hy:6(1)=0 vs. Hy:6(r)=#0.

Testing Procedure (Non-parametric Bootstrap):
1. Randomly select n samples from the original n samples with replacement
2. Estimate (,(7) and §,(7)

3. Repeat Steps 1 and 2 to construct sampling distributions of {;(7) and
G (7)
4. Construct percentile bootstrap confidence intervals for (,(7) and §,(7)

17 /24



Sensitivity Analysis for Binary Outcome

Probit regression: Y; = 1{¢ + ¢T; + §' X; + Uo; >0}, where Up; ~ N(0,1)

Expected causal indirect effect given p = corr(alt(U1;), Us;):

0p(7) :]E{CI) (fé(T)-F V(p,b,,%) ¥(p, by, %)

where fi5(7) = éo +&r+ @i, U(p, by, %) = [(bp) T, 5 (by) g +207 D (by) . +1]"°

D is a diagonal matrix with diag(21/2).

, and
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Performance Evaluation | (a =0.05)

Binary treatment (t=1, ¢ =0); a=(20,10,5,2,1;_,)7/(20,10,5,2,1;_,) 1x;
b=(0.5,-0.5,0.5,-0.5,0;,_,)"; (loga)"b x Effect Size

Estimated Indirect Effects (n=50, k=5)

0.75-

50~
050~

Coverage Rate
Coverage Length
True Positive Rate

0.25-
054 025

oMM PCR PCL oMM PCR PCL 0.00 025 050 075 1.00
Relative Effect Size

CMM: Proposed compositional mediation model
PCR: Principal components of compositional variables under POF

PCL: Principal components of compositional variables under SEM



Performance Evaluation Il (« =0.05)

Estimated Indirect Effects (n=50, k=25)
1.00- 121
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0.75-
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0.25- 06-

Y e —
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Relative Effect Size



Performance Evaluation Il (a =0.05)

Estimated Indirect Effects (n=50, k=50)
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COMBO Dataset

Bacteroidos Provotella

Carbohydrates

e Data {E
> 98 healthy subjects
> Fat intake as treatment
» 45 genera as compositional mediators ﬁ
E

» Dichotomized BMI at 25

e Interest:

Choline

22 /24



Fat intake, Microbiome, and Obesity (COMBO)

Bootstrap Distribution of DE Bootstrap Distribution of IDE
'9 -
)
8
8 -
g T % -
2 8- z %7
g -
74.2% & 1 88.7%
&1 o
(=} o
T T T T T T T T T T
-0.02 -0.01 0.0 0.01 0.02 0.03 -0.02 0.00 0.02 0.04
Estimated Direct Effect Estimated Indirect Effect
DE TIDE About 80% of effect of fat
0.002 (-0.003, 0.011) 0.008 (-0.005, 0.023) =  ntake ondichotomized BMI is
20% 80% mediated through gut

microbiome
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