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Genetic architecture of
complex traits

Natural selection &
demography
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* Genome-wide association studies (GWAS) allows for
better understanding of genetic architecture
* Have identified thousands of trait-associated variants
for complex traits

Timpson et al. 2018



Outline

* Inference of genetic architecture from
GWAS data & population genetic models

* How does genetic architecture differ across
populations?
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* Inference of genetic architecture from
GWAS data & population genetic models



Most GWAS hits are common

Number of GWAS hits
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Negative correlation between
effect size and frequency
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Purifying selection enriches for
rare variants with large effect

Trait is early
Variant with large —2nSet Reduce
effect on the trait reproductive fitness
Keep Vzii:::y K}jj;;;>
frequency low
Purifying
selection

* Eyre-Walker (2010):
 Propose a parameter called ©
« 1 captures the relationship between a variant’s effect

on the trait with its effect on fithess



T relates effects size to selection coefficient
and allele frequency
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T relates effects size to selection coefficient
and allele frequency
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T relates effects size to selection coefficient
and allele frequency
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Support for a relationship
between effect size and selection
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The number of causal variants
IS understudied
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The number of causal variants
Is difficult to study

GWAS hits
(known)




The number of causal variants
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The number of causal variants
Is difficult to study

GWAS hits
(known)
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The number of causal variants
Is difficult to study

GWAS hits

(known)

A site that hasn't

Causal variants mutated but could be a

(not known) trait-affecting variant

(not known)
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The total number of sites in the genome
that, if mutated, would give rise to a
trait-affecting variant

Mutational target size (M)



Goal: develop an improved

model of complex traits
* Infer M:

— M is not known for many traits

—The number of causal variants can be inferred from
knowing M

 Also, improve on existing methods to infer t:

—Existing method (i.e. Shoech et al. 2017) used genotyped
data

—QOur method uses summary statistics from GWAS

* Developed Inference of Genetic Architecture
method (InGeAr)

—An Approximate Bayesian Computation framework to infer
fort and M



InGeAr framework

GWAS simulation

Simulate causal
variants with a value of
M drawn from a prior
distribution

Rejection algorithm

Calculate effect size:
asnp; = ST, where T is
drawn from a prior
distribution

Determine number of
significant variants
based on power
(simulating GWAS)

Tanya Phung

Bioinformatics graduate student
Currently a postdoc with Melissa
Wilson Sayres




Summary statistics

Number of GWAS hits
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InGeAr framework

GWAS simulation

Simulate causal

variants with a value of :>

M drawn from a prior
distribution

Calculate effect size: Determine number of
asnp; = S°, where T is :> significant variants
drawn from a prior based on power

distribution (simulating GWAS)

Rejection algorithm

Step 1: Compute:
@™ — a™
z —emp < 0.6
bin;_4 l
- Accept (M, 1)
-> Repeat until 10,000
acceptances are obtained

Step 2: Compute:
6

z (GWAS hits; P — GWAS hits{™)?

|:> bil’li=1
- Select the best 10%
- Posterior distribution of M and t




Remove linkage disequilibrium
(LD) by considering independent
GWAS hits

» Kichaev et al. (2017) developed FINDOR
to identify independent, genome-wide
significant GWAS hits

—Weight GWAS hits by how well they tag
functional categories that are enriched for
heritability

—ldentify ~ 2,500 independent GWAS hits for
height



Application of InGeAr to height
GWAS from UKBiobank



Count

Mutational target size for

height: 95Mb
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Mutational target size for
height: 95Mb

» For a mutational target size of 95Mb (~3% of
the genome)

—~300,000 causal variants
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Coupling between selection and
trait effect for height
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Joint posterior distribution t of
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Assess model fit

Number of GWAS hits
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Model fits the empirical GWAS
data well
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GWAS hits are enriched for
variants with large effect size
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Proportion

Most causal variants are

weakly deleterious
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Strength |s|
Weak <104
Intermediate 10-4+-10-2
Strong >10-2

We'ak Interm'ediate Strcl)ng

Strength of selection




o o
S o
1 1

o

%V pexplained
o

o
o

Weakly and intermediately selected
variants explain most of the additive
genetic variance
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M varies across examined

traits

Trait
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T IS Ssimilar across examined

traits
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Our results support the omnigenic

model

* The omnigenic model (Boyle et al. 2017) predicts:

1. Alarge proportion of the genome (peripheral genes)
affects most traits

2. Most of the heritability is explained by the weak effects
from peripheral genes

* Mis on orders of ten of megabases for most traits
—Supports Prediction 1

e T IS similar for all traits examined
—Supports Prediction 2



Outline

* How does genetic architecture differ across
populations?



Additive variance when trait effects are
proportional to fithess effects (t = 0.5)
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Forward simulations under
more realistic demography

Arun Durvasula

(Genetics &
Genomics
Graduate student)
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Forward simulations under
more realistic demography
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 Forward simulation of a trait

under stabilizing selection
following an out of Africa
human demography

* Simulations done using SLiM

Haller and Messer 2016
Gravel et al 2011



Simulations imply similar
heritabllity across populations

T—-test P—value: 0.76585
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However, number of causal variants and
effect sizes are predicted to differ
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However, number of causal variants and
effect sizes are predicted to differ
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Testing models of genetic
architecture using gene expression

« Examine eQTLs in GEUVADIS data

» Overall, Lappalainen et al. (2013) find more
significant associations in EUR than YRI.
However, differences in power...

» Computed power to detect each variant (given
its effect size, frequency & sample size)

» Simulated eQTL studies of same sample size
to account for differential power
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Private variants account for the
majority of additive genetics variance
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Conclusions

* The mutational target size differs between traits
but is large (on orders of tens of megabases)

* Purifying selection is pervasive on complex
traits, even those not thought to be directly tied
to fitness

* Demography impacts the architecture of traits
* This provides an important additional source of

ambiguity when attempting to transfer polygenic
risk scores across populations
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Incorporate plelotropy

* Pleiotropy iIs captured by p (Uricchio et al.
2016)

* Modify InGeAr to also infer p



p IS close to 1
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t does not change significantly
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M 1s smaller when
Incorporating pleiotropy
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