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Transcriptome-wide Association Studies

• Genome-wide association studies (GWASs) have identified many 
genetic variants associated with diseases and complex traits.

• Expression quantitative trait loci (eQTL) mapping studies have also 
identified enabled accurate measurements of gene expression levels. 

• Integrative analysis of GWASs and eQTL mapping studies has the 
potential to yield insight into the causal relationship between genes 
and complex traits.
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Mendelian Randomization

• These existing approaches can all be thought of as a two-stage 
regression version of Mendelian randomization (MR) analysis. 

• MR is a form of instrumental variable analysis with SNPs serving as 
instruments.

• MR is a powerful statistical tool to determine causal relationship 
between an exposure variable (in this case, gene expression) and an 
outcome variable (in this case, complex trait) in observational studies 
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Horizontal Pleiotropy: 𝜸



Pervasive Horizontal Pleiotropy
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Additional Modeling Assumptions

• Because the number of SNPs (p) is often larger than the sample size 
(n), we need to make additional modeling assumption for model 
identifiability.

• For 𝜷, we follow standard polygenic models to assume 𝛽𝑗~𝑁(0, 𝜎𝛽
2).

• For 𝛄, we follow Egger regression to assume 𝛾1 = ⋯ = 𝛾𝑝 = 𝛾



Probabilistic Mendelian Randomization

• Instead of the usual two-stage regression procedure, we rely on the 
maximum likelihood estimation procedure for inference.

• We develop a computationally efficient fitting algorithm, based on a 
parameter expansion version of the expectation maximization algorithm 
(PX-EM).

• We test causal effect 𝐻0: 𝛼 = 0 through LRT.

• We test horizontal pleiotropic effect 𝐻0: 𝛾 = 0 through LRT.

• We refer to our method as PMR-Egger.



Simulations

• We extracted 𝑝 = 556 cis-SNPs of a gene from the GEUVADIS data 
(𝑛1 = 465) and simulated gene expression.

• We extricated the same SNPs from 2,000 controls in the Wellcome
trust case control consortium (WTCCC) and simulated trait. 

• We examined various scenarios, with 10,000 replicates for each 
scenario. 



Compared Methods: Testing 𝛼
• PrediXcan: Elastic Net prior on 𝜷; no 𝜸; two-stage inference

• TWAS: BSLMM prior on 𝜷; no 𝜸; two-stage inference

• SMR: Single 𝜷; no 𝜸; two-stage inference

• CoMM: Normal prior on 𝜷; no 𝜸; maximum likelihood inference

• LDA MR Egger: Fixed effects of 𝜷; Egger assumption on 𝜸; two-stage 
inference

• PMR-Egger: Normal prior on 𝜷; Egger assumption on 𝜸; maximum 
likelihood inference



Testing Causal Effect 𝛼 under the Null
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Compared Methods: Testing 𝛾

• LDA MR Egger: Fixed effects of 𝜷; Egger assumption on 𝜸; two-stage 
inference.

• MR-PRESSO: Permutation based approach; assumes independent 
instruments.

• PMR-Egger: Normal prior on 𝜷; Egger assumption on 𝜸; maximum 
likelihood inference.



Testing Horizontal Pleiotropy 𝛾 under the Null
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Real Data Applications

• GEUVADIS Expression Data (𝑛1 = 465), with ~15,000 genes.

• WTCCC: Seven common diseases (𝑛2 = ~5,000).

• UK Biobank: Ten quantitative traits (𝑛2 = ~300,000).
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UK Biobank: Testing Horizontal Pleiotropy



Summary

• We have presented an MR framework that unifies many existing 
integrative transcriptome wide association analysis method.

• Our method PMR-Egger effectively controls for horizontal pleiotropy 
through a maximum likelihood/probabilistic inference framework. 

• We have demonstrated the effectiveness of PMR-Egger through 
simulations and real data applications. 

• PMR-Egger is implemented in the PMR R package, to be available on 
www.xzlab.org

http://www.xzlab.org/
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