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Austism Sequencing Consortium

Whole exome data generated for 35,584 samples
(11,986 ASD cases)

Family-based data Case-Control data
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Austism Sequencing Consortium

Variant inheritance pattern Variant Effects
De novo Rare Inherited Case-Control Missense PTV
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Austism Sequencing Consortium
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sc-RNAseq Human forebrain clusters: wowakowski et al. 2017 science 2
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Overview

Genetics versus Genomics
e Successful gene discovery
e What is the meaning?

e Evaluate transcription: cell
type, gene-gene networks

Two stories today
e Single Cell RNA-seq:
estimating development

e Bulk RNA-seq: deconvolving
multiple-samples
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Background

Single cell RNA-seq

o Bulk RNA-seq

— gene expression at the tissue level
— mixture of various cell subpopulations

e Single cell RNA-seq
— cellular gene expression levels @
— reveals cell-to-cell heterogeneity & ®
@

— high levels of technical noise
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NSC-neuron lineage Glial cells Vascular cells

(various cell types in brain tissue)
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Background

Single cell clustering

o Existing algorithms focus only on hard clustering
— SC3, CIDR, Seurat ... [Kiselev et al. (2017); Lin et al. (2017); Satija et al. (2015)]

e Single cell data can be developing between cell types
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Application Results

Fetal brain cells, Camp et al.

o 220 fetal brain cells

— 12-13 post-conception weeks

— 12,694 — 430 selected genes

— 7 cell types
> apical progenitor (AP1, AP2)
» — basal progenitor (BP1, BP2)
» — neuron (N1, N2, N3)
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AP2 BP2@N2

Principal Component 1

of N, g .
oo _ Ostart
90 Q)
e
- fe
P 5 i 3

Principal Component2

Kathryn Roeder Learning from the Transcriptome

[Camp et al. (2015)]

9/31



Application Results

Developmental Trajectories
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Application Results

Developmental Trajectories
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SOUP publication

Zhu, Lei, Klei, Devlin, Roeder, “Semisoft clustering of single-cell
data”, PNAS (2019)
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What can we learn from bulk RNA-seq data? @"

Oligodendrocyte

Micmlia% Y.

tissue expression data purified-cells data
single-cell
RNA-seq data
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What can we learn from tissue expression data?
Cell type Yt @ * *
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What can we learn from tissue expression data?

Cell type ‘F& @ ‘* *

Expression of one gene

Expression
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What can we learn from tissue expression data?

Cell type ‘F& @ ‘* *
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Gene expression deconvolution

e The deconvolution model is written as
X =~ A W,
(pxn)  (pxK)(Kxn)

— X: single-measure tissue expression for p genes in n subjects,
— A: average gene expression over subjects for K cell types,
— W: mixing fractions of K cell types per subject (col.sum = 1).
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Gene expression deconvolution

e The deconvolution model is written as

X = A W
(pxn)  (pxK)(Kxn)

I

— X: single-measure tissue expression for p genes in n subjects,
— A: average gene expression over subjects for K cell types,
— W: mixing fractions of K cell types per subject (col.sum = 1).

subject cell type subject
75 56 cell 07 08 0.6

gene ~ gene 82 6.1 type 03 02 04
53 49
tissue expression cell-type-specific expression fraction

Kathryn Roeder Learning from the Transcriptome 15 / 31



Gene expression deconvolution

e The deconvolution model is written as

X = A W
(pxn)  (pxK)(Kxn)

I

— X: single-measure tissue expression for p genes in n subjects,
— A: average gene expression over subjects for K cell types,
— W: mixing fractions of K cell types per subject (col.sum = 1).

subject cell type subject
75 56 cell 07 08 0.6

gene ~ gene 82 6.1 type 03 02 04
53 49
tissue expression cell-type-specific expression fraction

e Assumption:
— A (cell-type-specific expression) is constant across subjects
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Existing single-measure deconvolution algorithms

e Unsupervised deconvolution:
— Estimating both A and W

> non-negative matrix factorization (NMF)

e Semi-supervised deconvolution:
— Given sparse structure of A, estimating A and W
> semi-supervised NMF
> quadratic programming
e Supervised deconvolution:
— Given A, estimating W
> least squares

» Bayesian estimation
> support vector regression

— Given W, estimating A
> least squares
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Multi-measure expression data

GTEx (Genotype-Tissue Expression) project: 13 brain
regions/measures; 105 subjects

BrainSpan atlas of the developing human brain: 26 brain
regions/measures; 33 subjects
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Multi-measure expression data

GTEXx (Genotype-Tissue Expression) project: 13 brain
regions/measures; 105 subjects

BrainSpan atlas of the developing human brain: 26 brain
regions/measures; 33 subjects

Brainstem
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Nueroexpresso: Variability by cell type and region
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New idea: multi-measure deconvolution

Goal: estimate individual-level cell-type expression

Assumptions:
e Expected cell type expression is constant across measurements
for an individual

Cells of a given type have a predictable expression pattern
Expression varies by individual because of genetic variation,
developmental stage, disease status etc.

e Cell-type fraction varies by individual (i) and measurement (t)

Pre-estimate W;: individual-level cell-type fraction, for each ¢
using single cell data
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New idea: multi-measure deconvolution (MIND)

T measurements for each subject i & gene j

o 1 k K
@ 1 1
3
£ k
) = t
3
8 K
'_
T
X; N w; X AJ
Tx1 TxK Kx 1

e X;;: tissue expression across multi-measures (observed)
o W pre-estimated cell type fractions (given)
e A;j: subject-level cell-type-specific gene expression (output)
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Single-measure vs. multi-measure deconvolution

Single-measure deconvolution

Average
Reference cell-type-specific
data ype-sp
expression
-
Single-measure Cell type
tissue expression fraction
J
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Single-measure vs. multi-measure deconvolution

Single-measure deconvolution

Multi-measure deconvolution (MIND)

Reference Average B Reference Average )
data cell—type—s;_)emflc data cell-type-specmc
expression expression
-
Single-measure Cell type Multi-measure Cell type
tissue expressiorl fraction tissue expression fraction
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Single-measure vs. multi-measure deconvolution

Single-measure deconvolution

Multi-measure deconvolution (MIND)

Reference Average Reference Average
data cell-type-specific dat cell-type-specific
expression ata expression
N
Single-measure Cell type Multi-measure Cell type
tissue expression fraction tissue expression fraction
J
Subject-level
cell-type-specific
gene expression
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Single-measure vs. multi-measure deconvolution

Single-measure deconvolution Multi-measure deconvolution (MIND)
Average Average
Re(fjertence cell-type-specific Re;ertence cell-type-specific
ala expression ata expression
-
Single-measure Cell type Multi-measure Cell type
tissue expression fraction tissue expression fraction
J

Subject-level
cell-type-specific
gene expression

Reference data with cell type information: scRNA-seq, NeuroExpresso
Multi-measure expression: GTEx, BrainSpan, ...

Kathryn Roeder Learning from the Transcriptome 21 /31



Three-level random-effects model for MIND

o Three-level random-effects model:

Xij = Wi Ay + e ;
(T'x1) (TxK)(Kx1) (Tx1)
Aj; ~ N(0,%,),
€ij N (O,O'(QjIT) .

level 1: T' = 10 measures
— level 2: p = 20,000 genes (indexed by 5)
— level 3: n =~ 100 subjects (indexed by )
— input: X (nxpxT), W (nxT x K)
— output: A (n xp x K)

e We derived a computationally efficient EM algorithm:

— Parameters are estimated via maximum likelihood;
— All genes can be deconvolved together in minutes.
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Estimation: random effects

Cell-type-specific expression (A;;, random effect) is estimated
using an empirical Bayes method:

e Estimates of random effects: conditional mean of random
effects given observed data and estimated parameter values

A= [I + 62 (ﬁ]CW;W/,;)_l} - (W;Wi)_l WX

e Shrinkage to the origin (James-Stein estimator)
e Weight depends on variance components and W;

e More robust to outliers than least squares
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Method evaluation: deconvolving GTEx brain data

o Measured cell-type-specific expression (A;;) from scRNA-seq
(ground truth) for several subjects

o Estimated A;; by MIND for the same subjects
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Method evaluation: deconvolving GTEx brain data

o Measured cell-type-specific expression (A;;) from scRNA-seq
(ground truth) for several subjects

o Estimated A;; by MIND for the same subjects

Astrocyte Oligodendrocyte

10
L

15
1
15

1

8

[73

®

5 o J cor=0.73
x

[}

- 0 5 10 15
2

E GABAergic Pyramidal
£

5}

a

Z

=

cor = 0.85
T T
0 5 10 15

Measured cell-type-specific expression

Kathryn Roeder Learning from the Transcriptome 24 /31



SV /AL

Method evaluation: simulation with real data

e Simulate tissue expression data (X,;) with

— cell-type-specific expression (A;;) measured from scRNA-seq
— cell type fraction (W) estimated in GTEx

- . 2 2 .
e;; with variance o7 o o (variance of A;;)

o Calculate the correlation between deconvolved (A;;) and true
cell-type-specific expression (A;;)
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Method evaluation: simulation with real data

e Simulate tissue expression data (X,;) with
— cell-type-specific expression (A;;) measured from scRNA-seq
— cell type fraction (W) estimated in GTEx
e;; with variance 02 o2 (variance of A;;)

o Calculate the correlation between deconvolved (A;;) and true
cell-type-specific expression (A;;)
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Method evaluation: simulation with real data

e Simulate tissue expression data (X,;) with

— cell-type-specific expression (A;;) measured from scRNA-seq
— cell type fraction (W) estimated in GTEx

- . 2 2 .
e;; with variance o7 o o (variance of A;;)

o Calculate the correlation between deconvolved (A;;) and true
cell-type-specific expression (A;;)
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iNA:

How can we use MIND?

Subject-level cell-type-specific expression

Cell type
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iNA:

How can we use MIND?

Subject-level cell-type-specific expression can provide novel insights
that are previously unavailable:

Cell type

versus key subject level covariates: case-control analysis

versus gene lists for enrichment analysis

versus genotype to discover eQTLs

to obtain gene-gene correlation and networks
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BrainSpan atlas
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Case study: cell-type-specific co-expression network

o Gene expression correlation = co-expression network

e Count number of connections per gene per cell type

Kathryn Roeder Learning from the Transcriptome 28 /31



Case study: cell-type-specific co-expression network

o Gene expression correlation = co-expression network
e Count number of connections per gene per cell type

e ASD (autism spectrum disorder) genes have more connections

than non-ASD genes in immature neurons
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Case study: cell-type-specific co-expression network

o Gene expression correlation = co-expression network
e Count number of connections per gene per cell type

e ASD (autism spectrum disorder) genes have more connections
than non-ASD genes in immature neurons
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Case study: using MIND identifies new ASD genes
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Larger Question for Progress

Seek gene-gene correlations computed by cell type
o Single cell data provides this, but the cells are from a very
small number of tissue samples

o Deconvolved tissue samples can be obtained from hundreds of
samples, but require at least 3 reps per sample

e Which variation is important for co-expression?
e Hard to determine which genes are co-expressed when the
expressions are at the maximum of the range of the genes

Can we combine information from both types of
data to construct better gene networks?
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