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Human Microbiome Research

I Use high-throughput
sequencing to quantify
abundances of microbial taxa

I Link the abundance to human
diseases and traits

I Proper modeling of microbial
abundance is essential to the
power of detecting this
association

Kinross et al., Genome Medicine 2011, 3:14
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Microbiome Data

Data Characteristics

I Compositional

I Zero-inflated

I Over-dispersed

I Complex correlation structure
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Count Data on a Taxonomic Tree

Counts for species can be summarized into higher taxonomic levels
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Outline

I Probability distributions for microbial compositions
I Dirichlet Multinomial (DM)
I Generalized Dirichlet Multinomial (GDM)
I Zero-Inflated Generalized Dirichlet Multinomial (ZIGDM)

I ZIGDM regression model
I Differential mean and dispersion tests

ZhengZheng Tang 4



Dirichlet Multinomial (DM)
Dirichlet Prior for Multinomial

K + 1 : Number of taxa in the composition
Y = (Y1, . . . ,Y(K+1)) with N =

∑K+1
j=1 Yj

P = (P1, . . . ,P(K+1)) with
∑K+1

j=1 Pj = 1

Y | P ∼ Multinomial(P,N),

P ∼ Dirichlet(ν, θ)

Number of parameters: K + 1
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DM is Not Ideal

I Negative correlations

I Restrictive mean-variance relationships

I Limited ability to handle excessive zeros
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Generalized Dirichlet Multinomial (GDM)
Generalized Dirichlet (GD) Prior for Multinomial
Generalized Dirichlet (Connor and Mosimann, JASA 1969)

Y | P ∼ Multinomial(P,N),

P ∼ GD(a,b), a = (a1, . . . , aK ),b = (b1, . . . , bK )

Number of parameters: 2K
GD reduces to Dirichlet if bj = aj+1 + bj+1, j = 1, . . . ,K − 1.

ZhengZheng Tang 7



Advantages of GD Prior

I Comparing with Dirichlet
Provide more general correlation structure

I Comparing with Logistic Normal
Conjugate prior for multinomial (Wong, Appl Math
Comput. 1998)

Y|P ∼ Multinomial(P,N)
P ∼ GD(a,b)
=⇒ P|Y ∼ GD(a∗,b∗),
a∗ = (a∗1, . . . , a

∗
K ), a∗j = aj + Yj and

b∗ = (b∗1, . . . , b
∗
K ), b∗j = bj + Yj+1 + . . . + YK+1,

j = 1, . . . ,K

Can GD handle excessive zeros?
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Construct GD from Independent Beta Variables

Zj ∼ Beta(aj , bj), j = 1, . . . ,K

Pj = Zj
∏j−1

i=1(1− Zi )

~www�Zj = Pj/(1−
∑j−1

i=1 Pi )

P = (P1, . . . ,PK ) ∼ GD(a,b)

“stick breaking process”
Doesn’t Permit Taxa Absence (Structural Zero)
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Zero-Inflated Generalized Dirichlet (ZIGD)

Zj ∼
{

0 with probability πj ,
Beta(aj , bj) with probability 1− πj ,

Pj = Zj
∏j−1

i=1(1− Zi )

~www�Zj = Pj/(1−
∑j−1

i=1 Pi )

P = (P1, . . . ,PK ) ∼ ZIGD(π, a,b), π = (π1, . . . , πK )
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ZIGD is a Conjugate Prior to Multinomial

Notation:
∆j = I (Pj = 0) = I (Zj = 0)
U : index set for taxa present in the sample (∆U = 0, ∆U = 1)
U : index set for the structural zeros
V: index set for taxa with zero counts (YV = 0, YV > 0)
Sets U and V are not exclusive: their intersection U ∩ V indexed taxa
that are present in the sample but have zero counts due to the
undersampling in the sequencing experiment (i.e. sampling zeros).

f (P | Y) = f (P | ∆,Y)Pr(∆ | Y)

I f (P | ∆,Y) = I (PU = 0)f (PU | ∆U = 0,∆U = 1,Y)

PU | (∆U = 0,∆U = 1) ∼ GD(aU ,bU )

PU | (∆U = 0,∆U = 1,Y) ∼ GD(a∗U ,b
∗
U )
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ZIGD is a Conjugate Prior to Multinomial

U : index set for the taxa present in the sample
V: index set for the taxa with zero counts

I Pr(∆ | Y) = I (∆V = 0)Pr(∆V | YV = 0,YV > 0)

Pr(∆V | YV = 0,YV > 0)

∝
∏
j∈V

{
π

∆j

j

[
(1− πj)

B(a∗j , b
∗
j )

B(aj , bj)

](1−∆j )
}
,

For the taxon j with zero count, the probability of this observed zero
being structural zero is

πj

πj+(1−πj )
B(a∗

j
,b∗
j

)

B(aj ,bj )

.
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ZIGDM Regression Model

Use ZIGD as a prior for multinomial → ZIGDM

I ZIGDM regression model can link mean, dispersion,
presence-absence frequency of the microbial abundance to
the covariates of interest

I An efficient EM for fitting the model and estimating
parameters
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ZIGDM Regression Model

n subjects measured on K + 1 taxa
i = 1, . . . , n; j = 1, . . . ,K + 1
Yij : observed taxon count
Pij : underlying true proportion
Xi : d-dimensional vector including intercept and covariates

Yi = (Yi1, . . . ,YiK ) ∼ ZIGDM(πi , ai ,bi ), where
πi = (πi1, . . . , πiK ), ai = (ai1, . . . , aiK ), and bi = (bi1, . . . , biK ).
We model µij = aij/(aij + bij) and σij = 1/(1 + aij + bij) as they

are Beta mean and dispersion parameters.

µij =
eα

T
j Xi

1 + eα
T
j Xi

, σij =
eβ

T

j Xi

1 + eβ
T

j Xi

, and πij =
eγ

T
j Xi

1 + eγ
T
j Xi

,

where αj = (α1j , . . . , αdj), βj = (β1j , . . . , βdj), and
γ j = (γ1j , . . . , γdj) are regression coefficients for taxon j .

ZhengZheng Tang 14



Equivalent Hierarchical Model

∆ij ∼ Bernoulli(πij), j = 1, . . . ,K ,

Zij = 0 if ∆ij = 1, Zij | ∆ij = 0 ∼ Beta(aij , bij), j = 1, . . . ,K ,

Pi1 = Zi1, Pij = Zij
∏j−1

k=1(1− Zik), j = 2, . . . ,K ,

Yi | Pi ∼ Multinomial(Pi ,Ni ), (1)

where Pi = (Pi1, . . . ,PiK ) and Ni =
∑K+1

j=1 Yij . (2)
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EM algorithm

Complete set of parameters: θ = (γ1, . . . ,γK ,α1, . . . ,αK ,β1, . . . ,βK )
Complete data log-likelihood expressed in terms of Z ’s:

l(θ) = log

 n∏
i=1

Pr(Yi | Zi )
K∏
j=1

f (Zij)




=
n∑

i=1

log {Pr(Yi | Zi )}

+
K∑
j=1

n∑
i=1

{
∆ij log πij + (1−∆ij) log(1− πij)+

(1−∆ij) [− log(B(aij , bij)) + (aij − 1) log(Zij) + (bij − 1) log(1− Zij)]
}
,

where aij = µij(1/σij − 1) and bij = (1− µij)(1/σij − 1).
Using Z ’s instead of P’s allows us to derive the explicit form of
posterior expectations in the E-step and estimate parameters for
each taxon independently in the M-step.
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EM algorithm – E Step

In the t-th E-step, we need to compute the expected complete data
log-likelihood,

Q∗θ =
K∑
j=1

n∑
i=1

E
{

∆ij log πij + (1−∆ij) log(1− πij)+

(1−∆ij) [− log(B(aij , bij)) + (aij − 1) logZij + (bij − 1) log(1− Zij)]
}
,

where the expectation is with respect to the posterior distributions of
(∆i | Yi ;θ

(t−1)) and (Zi | ∆i ,Yi ;θ
(t−1)) with θ(t−1) being the

parameter estimates in the (t − 1)-th M-step.
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EM algorithm – E Step

Based on the results for ZIGD posterior distribution, we can derive the
explicit form for the posterior means:

∆∗ij = E (∆ij | Yi ) =


0 if Yij > 0

πij

πij+(1−πij)
B(a∗ij ,b∗ij )
B(aij ,bij)

if Yij = 0 ,

A∗ij = E (logZij | Yi ,∆ij = 0) = ψ
(
a∗ij

)
− ψ

(
a∗ij + b∗ij

)
,

B∗ij = E (log(1− Zij) | Yi ,∆ij = 0) = ψ
(
b∗ij

)
− ψ

(
a∗ij + b∗ij

)
,

where a∗ij = aij + Yij , b
∗
ij = bij + Yi(j+1) + . . .+ Yi(K+1), and ψ(·) is the

digamma function.
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EM algorithm – M Step

Thus, Q∗θ can be rewritten as

Q∗θ =
K∑
j=1

Q∗γj +
K∑
j=1

Q∗αj ,βj
, (3)

where Q∗γj =
∑n

i=1{∆∗ij log πij + (1−∆∗ij) log(1− πij)} and

Q∗αj ,βj
=
∑n

i=1(1−∆∗ij){− log(B(aij , bij)) + (aij − 1)A∗ij + (bij − 1)B∗ij}.

In the t-th M-step, for each taxon j , we obtain γ
(t)
j from maximizing the

function Q∗γj and obtain α
(t)
j and β

(t)
j from maximizing the function

Q∗αj ,βj
.
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Association Tests

Test for the mean: H0 : α∗1 = . . . = α∗K = 0
Test for the dispersion: H0 : β∗1 = . . . = β∗K = 0
Test for the presence-absence frequency: H0 : γ∗1 = . . . = γ∗K = 0

I When performing a test on a particular set of parameters (e.g.
α’s), we include only the intercept coefficient in the model for
the other sets of parameters (e.g. β’s and γ’s)

I We adopted score statistics, which are computationally faster
and more stable than Wald and LR statistics (Lin and Tang, AJHG 2011)

I The asymptotic approximation of the test statistics may not be
accurate when most of the observations are zero, especially
when the sample size is small. Therefore, we need to use
permutation techniques to obtain p-values.
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Why we care about differential dispersion?

Microbiome compositions are very dynamic
Disease-microbe association can be moderated by many factors,
resulting in heterogeneous dispersion levels between disease and
healthy groups
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Simulation Study
Methods: Differential-Mean, Differential-Dispersion
ZIGDM-based tests: ZIGDM1 and ZIGDM2

GDM-based tests: GDM1 and GDM2

DM-based tests: DM1 and DM2 (La Rosa et al., PLOS ONE 2012)

Non-parametric tests: QCAT1 and QCAT2 (Tang et al., Bioinformatics 2017)

Setup:

I Simulate 6 taxon counts for two groups with same sample
sizes and tested differential abundance in the 6 taxa
between the two groups.

I Sample sizes of 100 and 200 in all simulation studies

I In the power evaluation, we change either the mean
abundance or the dispersion level in one group.

I 5000 simulated data sets to evaluate type I error and
power of the tests at the 0.05 significance level.
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Simulation Study

Y ∼ Multinomial(P,N); N ∼ Poisson(1000)

model for
proportion P

data generation parameter specification

Dirichlet P = {Pj}6
j=1 mean of Dirichlet: µj = 1/6

∼ Dir(µ, σ) dispersion of Dirichlet: σ = 0.3
µ = {µj}6

j=1

GD Zj ∼ (ZI )B(πj , µj , σj) mean of Beta: µj = 0.2

ZIGD Pj = Zj

∏j−1
i=1 (1− Zi ) dispersion of Beta: σj = 0.2

(j = 1, . . . , 5) zero-inflation:

P6 = 1−
∑5

i=1 Pi {πj}5
j=1 = {0.1, 0.2, 0.4, 0.6, 0.8}

LN {Wj}5
j=1 ∼ LN(µ,σ,Ω) mean of Normal: µj = 0

ZILN Pj = Wj/(
∑5

i=1 Wi + 1) variance of Normal: σj = 1

(j = 1, . . . , 5) correlation: Ωjj
′ = 0.5|j−j

′
|

replace counts with zero zero-inflation:

P6 = 1−
∑5

i=1 Pi {πj}5
j=1 = {0.1, 0.2, 0.4, 0.6, 0.8}
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Power Simulation Setup

parameter specification perturbation

mean of Dirichlet: µj = 1/6 µk ∼ Unif (0, 0.5)
dispersion of Dirichlet: σ = 0.3 OR σ ∼ Unif (0, 0.5)

mean of Beta: µj = 0.2 µk ∼ Unif (0, 0.5)
dispersion of Beta: σj = 0.2 OR σk ∼ Unif (0, 1)
zero-inflation:
{πj}5

j=1 = {0.1, 0.2, 0.4, 0.6, 0.8}

mean of Normal: µj = 0 For LN: µk ∼ Unif (0, 1)
variance of Normal: σj = 1 OR σk ∼ Unif (1, 6)

correlation: Ωjj
′ = 0.5|j−j

′
|

zero-inflation: For ZILN: µk ∼ Unif (0, 2)
{πj}5

j=1 = {0.1, 0.2, 0.4, 0.6, 0.8} OR σk ∼ Unif (1, 8)
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Power under Non-zero-inflated Models

ZhengZheng Tang 25



ZIGDM
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Take Home Message

I The ZIGDM tests are more powerful to detect differential
mean/dispersion and are more robust to the underlying
distribution if the taxon counts are zero-inflated

I If the taxon counts are not zero-inflated, the GDM tests
are more desirable

I The DM tests yield similar power to the GDM test even if
data are DM distributed and the DM
differential-dispersion test has substantial power loss if
data are not DM distributed

I The QCAT tests have robust and decent power in
detecting differential mean but cannot powerfully detect
differential dispersion
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Gut Microbiome and Body Mass Index

Wu, Gary D., et al. Linking long-term dietary patterns with gut microbial enterotypes.

Science 334.6052 (2011): 105-108.

I Gut microbiota play an important role in obesity

I Fecal samples were collected from 98 healthy volunteers, along
with their demographic data and diet information

I Sample DNA was analyzed by sequencing the V1-V2 region of
the 16S rRNA gene

I The sequencing reads were taxonomically classified to the 80
genera, and then mapped to a taxonomic tree with 74 lineages
from family to kingdom

Identify the microbial lineages have differential mean or dispersion
between high and normal BMI groups
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Count Data on a Taxonomic Tree
Counts for species can be summarized into higher taxonomic levels
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Apply Tests to Lineages (Subcompositions)
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Apply Tests to Lineages (Subcompositions)
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Apply Tests to Lineages (Subcompositions)
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Apply Tests to Lineages (Subcompositions)
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Apply Tests to Lineages (Subcompositions)
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Apply Tests to Lineages (Subcompositions)
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BMI-Associated Lineages

Use Benjamini-Hochberg procedure to control FDR at 0.05 level

Results from DM and QCAT tests:
Family Ruminococcaceae
(DM1 p-value = 0.0013 and QCAT1 p-value = 0.00014)
Family Veillonellaceae
(DM2 p-value = 0.0012 and QCAT2 p-value = 0.00080)

Results from GDM and ZIGDM tests:
Family Ruminococcaceae
Family Prevotellaceae
(ZIGDM2 p-value = 0.0014 and GDM2 p-value = 0.0014)
Kingdom Bacteria
(ZIGDM2 p-value = 0.0016)
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Differential Lineages
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QQ plots for the two families under order
Bacteroidales
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QQ plots for the three most abundant phyla

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●
●●
●●●

●●
●●
●●

●●
●●●

●●
●●

●●●
●●●

●●●●●●
●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●

●●
●●●

●●
●●
●●
●●
●●

●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●
●●
●●●

●●
●●
●●

●●
●●●

●●
●●●●

●●●●
●●●●●●

●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●
●●●

●●●
●●
●●
●●
●●
●●●●

●
●
●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●
●●
●●

●●
●●
●●
●●

●●
●●●

●●
●●

●●●
●●●

●●
●●●●

●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●

●●
●●●

●●
●●
●●
●●
●●●

●
●
●
●

●
●
●

DM GDM ZIGDM

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

obs

th
eo

●

●
●

●
●
●
●

●
●●●

●●
●●
●●
●●●

●●●●●●●
●●●

●●●
●●●
●●●●●

●●●
●●●
●●●●●

● ●●●
●●●

●●●
●●
●●●

●●
●●

●●
●●
●●

●●●
●●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●
●
●
●

● ●●●
●●
●●
●●
●●●

●●●●●●●
●●●

●●●
●●●
●●●●●

●●●
●●●
●●
●●●

● ●●●
●●

●●
●●
●●
●●
●●

●●
●●●

●●
●●

●●●
●
●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●
●
●
● ● ●●●

●●
●●
●●
●●●

●●●●●●
●●●

●●●●
●●●
●●●●●

●●●
●●●
●●
●●●

● ●●●
●●●

●●
●●
●●
●●

●●
●●

●●
●●
●●

●
●
● ●●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

DM GDM ZIGDM

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

obs

th
eo

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●● ●●

●●
●●

●● ●●
●

●
●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●

●●●
●● ●●●●

●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●

●●●●●
●●●●

●●
●●
●●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

DM GDM ZIGDM

0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.4

obs

th
eo

T
he

or
et

ic
al

 q
ua

nt
ile

s

Observed quantiles

p_
_B

ac
te

ro
id

et
es

p_
_F

irm
ic

ut
es

p_
_P

ro
te

ob
ac

te
ria

Choose between ZIGDM and GDM based on AIC/BIC or LRT

ZhengZheng Tang 39



Summary

I The ZIGDM provides better fit to the microbiome data
than DM

I The ZIGDM provides a more flexible way of
accommodating excessive zeros and disentangle structural
zeros and sampling zeros.

I Propose score tests based on the ZIGDM regression model
to detect differential mean or dispersion level of microbial
composition

I Develop an efficient EM algorithm to estimate parameters
in the ZIGDM regression.

Tang, Zheng-Zheng, and Chen, Guanhua. ”Zero-inflated generalized

Dirichlet multinomial regression model for microbiome compositional

data analysis.” Biostatistics, kxy025, (2018).
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Software

https://tangzheng1.github.io/tanglab/software.html
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