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Genome Wide Association Study(GWAS)

o Genome Wide Association Study has been widely used to study how individual
genetic variants associate with diseases of interest.

o A typical GWAS employs a case-control design.

Cases — random sample from disease population
Controls — random sample from disease-free population

01111101021220100011 Control
20011200010110110100 Control
2012201210011010011 1 Control
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22120100012212121021  Case
01100210021112112010  Case
01100102211112012112 Case
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Overview

o In past decade, Genomewide Association Study(GWAS) made remarkable
progress in our understanding of the role of genetic variation in complex human

diseases.

@ According to GWAS catalog, https://www.ebi.ac.uk/gwas/home, over 3000 loci
were discovered from 2854 publications. (33674 unique SNP-trait associations)
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Secondary Phenotype Analysis in GWAS

@ Besides the primary disease status (D) and genetic variants (X), GWAS data
often include rich information on additional phenotypes (Y), e.g. BMI, blood
pressure, cholesterol level. They often are characteristics of the diseases.

@ Analyzubg the genetic association with these secondary phenotypes is an
important way to understand underlying biological mechanisms.

Primary analysis: X = D Secondary analysis X = Y
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Why Quantile Analysis?

@ Most existing strategies are to identify genetic variants that influence the mean of
the phenotypes.

@ Genetic effects are more complex than mean-level associations.

LETTER

FTO genotype is associated with phenotypic
variability of body mass index

Alist of authors and their affiliations appears at the end of the paper.

401:10.1038/nature11401

environmental sensitivity so that genotypes differ in phenotypic vari-
ance. Therefore, even if the environments,internal or external, are not
directly measured, evidence for genetic control of variation can be

There is evidence across several species for genetic control of
pl\enotypic variation of complex taits'*, such that the varance

genotype dep &

controlof t
tural selection programmes and human medicine, yet for complex
traits, no individual genetic variants associated with variance, as
opposed to the mean, have been identified. Here we perform a
‘meta-analysis of genome-wide association studies of phenotypic
variation using ~170,000 samples on height and body mass index
(BMI) in human populations. We report evidence that the single

- quantified through an al\alyms of variability.

There is empirical evi for genetic control of phenotypic vari-
ation n severa pecies including Drosaph”, snas, mare” and
chickens', and specific quantitative trait loci with an effect on variance
have been reported for yeast® and Arabidopsis. Many theories and
methods to identify genetic loci responsible for phenotypic variability
have been proposed"'* . In humans, there have been reports that

@ We would like to consider higher-level associations by using Quantile Regression
(Koenker and Bassett, 1978).
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Quantile Regression

Figure 1. The quantile effect under location, scale and location-scale models.
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Quantile model for secondary phenotypes

@ A case-control GWAS sample: n, cases denoted by {x;,y;,d: =1,z;};_15 5>
and n, controls denoted by {x;,y;,d; = 0,2}, 11, _»
o d; is the binary indicator for cases;

@ y; is a continuous phenotype of interest
o X; is a p-dimensional vector of SNP

e z;is a g-dimensional controlling variables

@ Quantile model in general population

Q. (yilx) = X/Tﬂo,r + Z/T'Yo,r'

@ Goal: to estimate f3, . consistently using a case-control sample.
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Major statistical issues in Secondary (Quantile) Analysis

@ Due to the case-control sampling, (x;, y;, Z;) are no longer representative of the
general population.

@ Ignoring this data structure and directly regressing the secondary trait Y against X
and Z could lead to substantive bias.

Source Population Random Sample

v e i) - Contros

Source Population Case Control
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Major statistical issues in Secondary (Quantile) Analysis

@ Controls only when disease is rare, but it may lose efficiency.

o Inverse Probability Weighing (IPW) If the P(select | X, D) is known, we could
use an IPW approach.

o A few likelihood based proposals have been made to utilize the entire case
control sample, including Roeder, Carroll and Lindsay (1996), Lee, McMurchy and
Scott (1997), Jiang, Scott and Wild (2006), and Lin and Zeng (2009).

@ Those methods cannot be applied to quantile regression directly, since the latter
does not assume a parametric likelihood.

o Review two recently developed methods for secondary quantile analysis

o A weighted estimating equation approach combining observed and “counterfactual”
outcomes (Wei, Song, Liu and lonita-Laza, JASA, 2016)

o A superpopulation treatment (Liang, Ma, Wei and Carroll, JRSS-B, 2018)
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Estimation of quantile regression.

© Mean regression E(Y|X) = X',

B =arg mpjn EY(Y—XTﬁ)2 p‘l?(u)
p= argrr;jin;(n—xfﬂ)z-

o Assume Q.(Y|X) =X"p(7), then

P() = argminE, (oY X))

-1 T

B(r) =argn;3ianT{y,-—X,-Tﬁ)-
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Quantile regression estimating functions

o Estimating function: W_(X, Y, ) =[7— {Y <X"B}]X

o Atthe true 3, .,
Ev[¥.(X,Y,B,.) | X]=0.

o With a representative sample, one can obtain a consistent estimate by solving

Z\Pr(xi’yi’ﬁ) =0
i=1
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New estimating functions with counter-factual observations

@ Expand the original estimating functions

0= El:\I/T(X’ Y’ﬂo,r) |X]
= E[¥.(XY,B,:) | X,0=0]P(D=0IX)
+E [ (X, Y,By.) | X,D=1]P(D=1]X)

@ Suppose we are able to observe a counter-factual outcomes y; for each i. Then
one could construct unbiased estimation equations following (1) by

Z {"I’r(xny/"ﬁ)p(di [ %) +%.(x;, 7, B)p(1—d| xi)} =0,

i=1
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New estimating functions with counter-factual observations

o In reality, those pseudo counter-factual outcomes are unobserved. To get around
this, we propose to simulate counter-factual outcomes y;’s from the conditional
quantile process

ﬂO(T|d):argnEnEY[||q}T(Y’X,ﬁ)|l |X1D:d]’vT (1)

—x" B,(7 | 0) is the conditional quantile function of y given x among controls,
—x"B,(7 | 1) defines that among disease population.
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Simulating the counter-factual outcomes

o Estimate f,(7 | 0) and x" B,(7 | 1) from cases and controls separately on a fine
grid of T’s.

@ For the ith subject, i = 1,..., n, we simulate its pseudo outcome y; by
371' = x,,T/J’(u, | 1 _di)’ up~ U(0’1)
where u; is a random draw from Uniform (0, 1) distribution.

@ The sampling estimating equations are then

Z\v (%Y BYP(d | %) + ¥, (x, 7, B)p(1—d | ) = 0. (2)
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Simulating the counter-factual outcomes

@ Simulating pseudo outcomes is subject to sampling uncertainty, and brings extra
variability into parameter estimation.

@ To further stabilize the variance, we suggest to repeat the above simulation
procedures m time, and use their average as final estimation.

m

En,r =m" Z Ar(,[-;)

=1
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Estimating P(D|X)

@ To estimate the conditional disease probability P(D|X), we assume a logistic
model
P(D = 1[X) = exp(, +XTT1)/{1 +exp(y, +XT71)}

@ Or, use the derived model from the primary analysis.

@ The slope 7, can be consistently estimated by regressing d; over x; using the case
control sample (Prentice and Pyke, 1979).

@ The intercept v, can be calculated by solving the equation

Py = f exp(yo + XT?1 )/ {1 4 exp(r, + XT?1 )aFy, )
X

where P, is the overall disease prevalence, Fy is the distribution of X.
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Estimating p(D|x)

@ In some cases, Fy can be obtained from external resources. Such as single SNP
comparison, Fy can be derived from the minor allele frequency ( MAF )

@ When the joint distribution of X is hard to obtain, we proposed to approximate v,
by solving its sample version,

n 2
Y . 1 ~ ~
Yo = arg ”;l')n (Po 4 ZeXp(YO + X,TT1 )/ {1+ exp(y, + X,TT1 )) . 4

i=1

@ P, is estimated sample prevalence.
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Large sample properties of the proposed estimator

Under Assumptions 1-5, for k, — co and k,/n — 0, we have
‘/ﬁ(ljn,f - ﬁn,’r) = N(O’ G(;1 EOGO_1 )’

where g = V, + m 'V, +2U; + {(m—1)/m}U,
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Applications: Part of New York University Bellevue Asthma Registry

@ D: 387 asthmatics and 212 healthy controls

X: one of the 10 SNPs on the Thymic stromal lymphopoietin (TSLP) gene

@ Z: a continuous variable derived as the first principal component scores from 213
ancestry informative markers (AlMs) to adjust for population stratification.

Y: Forced expiatory volume in one second (FEV,), an important quantitative
measure of lung functions. Values of between 80 and 120 are considered normal.

@ Model
OT(FEV1) :ﬁO,T +ﬁ1,rx+ﬂ2,rzi (5)
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Estimated allelic effects in the mean regression model and quantile regression models at quantile levels of 0.
0.25, 0.5, 0.75 and 0.85

mean* 7=0.15 T =0.25 T=0.5 T =0.75
SNPs Est. P-value Method Est. P-value Est. P-value Est. P-value Est. P-value
rs11466743 -8.1 0.009 SICO(10) -17.2 0.003 -6.7 0.015 -1.9 0.307 -7.5 0.000
IPW -18.4 0.103 -3.9 0.733 -2.5 0.638 -6.8 0.216
2289278 35 0.041 SICO(10) 0.5 0.691 -1.9 0.140 5.8 0.000 1.4 0.125
IPW -1.2 0.641 -1.6 0.633 6.0 0.028 1.0 0.631
rs11241090 -4.8 0.042 SICO(10) -3.7 0.189 -0.3 0.900 -0.7 0.671 -5.9 0.000
IPW -3.5 0.678 2.0 0.696 -2.5 0.486 -7.0 0.099

* Mean coefficients were estimated using the profile likelihood methods in Zeng and
Lin(2009).
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Estimated allelic effects in the mean regression model and quantile regression models at quantile levels of 0.

0.25, 0.5, 0.75 and 0.85

mean* 7=0.15 T =0.25 T=05 7 =0.75

SNPs TTEst._ _Pvalue  Method Est. P-value Est. P-value Est. P-value Est. P-value
rs1898671 0.2 0.920 SICO(m=10) 2.7 0.000 2.2 0.003 -1.8 0.010 -0.4 0.550
IPW -3.1 0.176 -2.1 0.307 -0.7 0.776 0.6 0.800

rs2289277 0.6 0.544 SICO(m=10) 3.0 0.000 2.6 0.000 0.2 0.797 0.5 0.309
IPW 3.4 0.105 21 0.075 -0.5 0.800 0.2 0.872

rs10035870 -11 0.659 SICO(m=10) 0.9 0.472 1.5 0.234 28 0.063 5.6 0.000
IPW -2.2 0.606 0.2 0.966 2.2 0.688 5.7 0.319

* Mean coefficients were estimated using the profile likelihood methods in Zeng and
Lin(2009).
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Quantile regression for secondary phenotypes

A weighted estimating equation approach

Conditional FEV1 distribution Prediction

Semiparametric efficient secondary quantile analysis

rs11466743 = GG 6-----
rs11466743 = AG/AA
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Forced expiatory volume in one second (Y)
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Quantile regression for secondary phenotypes Sel

Cumulative Density Function (CDF) of FEV1
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More recent development in secondary quantile analysis

@ Semi-parametric Efficient Estimation in Quantile Regression of Secondary
Analysis by Liang, Ma, Wei and Carroll (2018)

@ Based on the concept of "Hypothetical Population", where (1) the disease to
non-disease ratio is n, /ny and (2) F(Y,X|D) = Fyue(Y, X|D).

@ A case-control sample from the true population can be treated as a random
sample from the super-population.

o Existing semi-parametric efficient estimation for iid sample can be applied to
enhance the efficiency.
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More recent development in secondary quantile analysis

@ The join likelihood of (Y, X, D) in the super-population can be written and
decompose as

fRy.o(Xy,d)
n,
= fs(d) X Y\D( ,y,d) = _dft YID(x’y! d)
nd ( )T]Z(erxx) DIX, y(d, X, Y, a)

C o [y (0ma(en X)fhy  (ds %y, @)du(x)u(y)
ndn1(x)n2(y_ﬁ7,c_ Tﬂ’r’ )f(d,X,y, )
T 0 )My = Br— X, X) (A%, v, @) (x)u(y)

@ Semi-parametric efficient estimation equation is consequently constructed.
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More recent development in secondary quantile analysis

Efficient score in quantile regression

Sert(X, Y, D;0.n) =S —g(Y — r(X,a).X) — (1 — D)vo — Dvy,
where

dlog{f(d,x,y,B)}/98
$=8(x.y.d.0.n) = alog[nz}y(* r(x,a),x}]/0a |

by = E{fD|X,y(1 —d, X, Y) | D= d}, u- = I(G < 0) -7,
co=E(S|D=d)— E{E(S|e.X)| D=d}:

KX, y) = [Ch_o{naf(d, X, y)}/(n7a)]~;

ti(x) = [E{ER(X, Y) | X))

to(X) = U, E(S | e, %) | X} — (Co/bo) E{U, forx (0, X, Y) | X}
@(X) = —b071Er{U7—fD|x.y(0,X, Y) ‘ X}; a(x) =t (X){tg(x) + t3(x)uo};
o = (1 — E[u, t,(X)i(X)x(X, Y) | D = 0))~" E[u t; (X)ta(X)x(X, Y) |
D = 0]; uy = —(no/n1)uo; Vo = (m1/bo)(Uo + Co);

Vi = —(mo/bo)(Uo + Co); g(e. X) = E(S |

€, X) — Ura(X)s(X, ¥) — Vofpix,v(0, X, y) — Vafpix.v (1, X, y)-
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More recent development in secondary quantile analysis

@ The efficient estimating function can be estimated from the sample
@ The resulting quantile estimates are consistent and more efficient

@ The population prevalence could be unknown
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Numerical example

Table: Y = 0.5+ X + (14 0.3X)e, eNormal

T 0.1 0.25 0.5 0.75 0.9
Truth B 0.744 0.865 1 1.135 1.256
SICO | mean 0.740 0.862 0.995 1.125 1.244
Semi | mean 0.747 0.867 0996 1.126 1.246
SICO sd 0.196 0.159 0.142 0.156 0.192
Semi sd 0.187 0.144 0.119 0.126 0.155
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Numerical example

Table: Y = 0.5+ X + (14 0.3X)e, € Gamma

T 0.1 0.25 0.5 0.75 0.9
Truth B 1.097 1.163 1.268 1.412 1.578
SICO | mean 1.096 1.158 1.260 1.404 1.583
Semi | mean 1.100 1.163 1.265 1.408 1.561
SICO sd 0.089 0.108 0.131 0.178 0.277
Semi sd 0.084 0.096 0.115 0.150 0.231
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