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Genome Wide Association Study(GWAS)

Genome Wide Association Study has been widely used to study how individual
genetic variants associate with diseases of interest.

A typical GWAS employs a case-control design.

Cases — random sample from disease population
Controls — random sample from disease-free population
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GWAS

In past decade, Genomewide Association Study(GWAS) made remarkable
progress in our understanding of the role of genetic variation in complex human
diseases.

According to GWAS catalog, https://www.ebi.ac.uk/gwas/home, over 3000 loci
were discovered from 2854 publications. (33674 unique SNP-trait associations)
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Secondary Phenotype Analysis in GWAS

Besides the primary disease status (D) and genetic variants (X ), GWAS data
often include rich information on additional phenotypes (Y ), e.g. BMI, blood
pressure, cholesterol level. They often are characteristics of the diseases.

Analyzubg the genetic association with these secondary phenotypes is an
important way to understand underlying biological mechanisms.

Primary analysis: X ⇒ D Secondary analysis X ⇒ Y
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Why Quantile Analysis?

Most existing strategies are to identify genetic variants that influence the mean of
the phenotypes.

Genetic effects are more complex than mean-level associations.

LETTER
doi:10.1038/nature11401

FTO genotype is associated with phenotypic
variability of body mass index
A list of authors and their affiliations appears at the end of the paper.

There is evidence across several species for genetic control of
phenotypic variation of complex traits1–4, such that the variance
among phenotypes is genotype dependent. Understanding genetic
control of variability is important in evolutionary biology, agricul-
tural selection programmes and human medicine, yet for complex
traits, no individual genetic variants associated with variance, as
opposed to the mean, have been identified. Here we perform a
meta-analysis of genome-wide association studies of phenotypic
variation using 170,000 samples on height and body mass index
(BMI) in human populations. We report evidence that the single
nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus,
which is known to be associated with obesity (as measured by mean
BMI for each rs7202116 genotype)5–7, is also associated with
phenotypic variability. We show that the results are not due to
scale effects or other artefacts, and find no other experiment-wise
significant evidence for effects on variability, either at loci other
than FTO for BMI or at any locus for height. The difference in
variance for BMI among individuals with opposite homozygous
genotypes at the FTO locus is approximately 7%, corresponding to
a difference of 0.5 kilograms in the standard deviation of weight.
Our results indicate that genetic variants can be discovered that are
associated with variability, and that between-person variability in
obesity can partly be explained by the genotype at the FTO locus.
The results are consistent with reported FTO by environment
interactions for BMI8, possibly mediated by DNA methylation9,10.
Our BMI results for other SNPs and our height results for all SNPs
suggest that most genetic variants, including those that influence
mean height or mean BMI, are not associated with phenotypic
variance, or that their effects on variability are too small to detect
even with samples sizes greater than 100,000.

Genetic studies of complex traits usually focus on quantifying and
dissecting phenotypic variation within populations, by contrasting
mean differences in phenotypes between genotypes. For example, in
association studies the difference between the average phenotype (P) of
each genotype is tested. In addition, the phenotypic variance among
individuals of the same genotype (G) can vary across genotypes, so that
phenotypic variance conditional on genotype, var(PjG), is not con-
stant. Phenotypic variance given a particular genotype does not need to
be due to sensitivity to external environmental factors but can, for
example, be caused by developmental fluctuation of the internal
micro-environment in a genotype-dependent manner1. For example,
genetic control of stochastic variation in development or in homeo-
static control1,4. The difference between genotypes can also depend on
external factors, for example, on the environment in which they are
reared, in which case there is a genotype by environment (G 3 E)
interaction. In species in which the same genotype can be measured
across defined environments, such as in plant or animal populations,
the difference in mean phenotype for each genotype can be quantified
experimentally, and is known as the reaction norm of the genotype11,12.
However, any environment is likely to be heterogeneous, so that the
environment experienced by each individual differs, although these
differences are not formally recognized by the experimenter. In this
situation, if a G 3 E interaction exists it may manifest as differences in

environmental sensitivity so that genotypes differ in phenotypic vari-
ance. Therefore, even if the environments, internal or external, are not
directly measured, evidence for genetic control of variation can be
quantified through an analysis of variability.

There is empirical evidence for genetic control of phenotypic vari-
ation in several species1, including Drosophila13, snails14, maize15 and
chickens3, and specific quantitative trait loci with an effect on variance
have been reported for yeast2 and Arabidopsis4. Many theories and
methods to identify genetic loci responsible for phenotypic variability
have been proposed1,16–18. In humans, there have been reports that
variability of serum cholesterol and triglyceride levels within mono-
zygotic twin pairs depends on their genotype at the MN blood group
system19. In clinical practice, knowledge of phenotypic variability as a
function of genotype may be important when the phenotypes are risk
factors for disease or treatment response, in particular when there are
no mean differences between genotypes in the population19.

Detection of genetic variation in environmental or phenotypic vari-
ance requires large sample sizes because relative to their expected
values, the variance has a larger sampling error than the mean16,20.
We performed a meta-analysis of genome-wide association studies
(GWAS) of phenotypic variation for height and BMI in human popu-
lations on approximately 170,000 samples comprising 133,154 in a
discovery set and 36,727 for in silico replication, and report a single
locus with a genome-wide significant effect on variability in BMI.
Height and BMI were chosen because genetic effects on variability in
height and size traits have been reported in other species, and because
very large samples of genotyped and phenotyped individuals are avail-
able through existing research consortia.

We performed a discovery meta-analysis of 38 studies consisting of
133,154 individuals (60% females) of recent European decent to
identify SNPs that are associated with the variability of height or
BMI. In each study, ,2.44 million genotyped and imputed autosomal
SNPs were included in the analysis after applying quality-control
filters. We adjusted height and BMI phenotypes for possible covariates
such as age, sex and case-control status, and standardized them to z
scores by an inverse-normal transformation. We then regressed the
squared z scores (z2), which are a measure of variance20, on the geno-
type indicator variable of each SNP to test for association of the SNP
with trait variability. The association statistics were corrected by the
genomic control method21 in individual studies and then combined by
an inverse-variance meta-analysis across all of the studies (see
Methods). We selected 42 SNPs at 6 loci for height and 51 SNPs at 7
loci for BMI with P , 5 3 1026 for in silico replication (Supplementary
Fig. 1). We examined the top two SNPs at each of the 6 loci for height
and 7 loci for BMI in a further sample of 36,727 individuals (54%
females) of European ancestry from 13 studies (Methods). For BMI,
only rs7202116 at the FTO locus (Fig. 1) and rs7151545 at the RCOR1
locus (Supplementary Fig. 2) were replicated at genome-wide signifi-
cance level, with P 5 2.9 3 1024 and P 5 3.6 3 1023 in the validation
set and P 5 2.4 3 10210 and P 5 4.1 3 1028 in the combined set,
respectively (Table 1). None of the height SNPs was replicated
(Table 1). We show by an approximate conditional analysis using
summary statistics from the discovery meta-analysis and estimated
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We would like to consider higher-level associations by using Quantile Regression
(Koenker and Bassett, 1978).
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Quantile Regression

Quantile effect

QY (τ | X = 1, Z)−QY (τ | X = 0, Z)

Linear quantile model

QY (τ | X , Z) = Xβ(τ)+Z>γ(τ)

Capture the genetic effects
across the entire distribution

β(τ) can be consistently
estimated through quantile
regression

Figure 1. The quantile effect under location, scale and location-scale models.  
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Quantile analysis

Terry et al. Breast Cancer Research 2017

Wei QR Short Course



Overview
Quantile regression for secondary phenotypes

A weighted estimating equation approach
Semiparametric efficient secondary quantile analysis

Quantile model for secondary phenotypes

A case-control GWAS sample: n1 cases denoted by {xi , yi , di = 1, z i}i=1,2,...,n1
,

and n2 controls denoted by {xi , yi , di = 0, z i}i=n1+1,...,n

di is the binary indicator for cases;

yi is a continuous phenotype of interest

xi is a p-dimensional vector of SNP

z i is a q-dimensional controlling variables

Quantile model in general population

Qτ(yi |xi) = x>i β0,τ+ z>i γ0,τ.

Goal: to estimate β0,τ consistently using a case-control sample.
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Major statistical issues in Secondary (Quantile) Analysis

Due to the case-control sampling, (xi , yi , z i) are no longer representative of the
general population.

Ignoring this data structure and directly regressing the secondary trait Y against X
and Z could lead to substantive bias.

Wei QR Short Course



Overview
Quantile regression for secondary phenotypes

A weighted estimating equation approach
Semiparametric efficient secondary quantile analysis

Major statistical issues in Secondary (Quantile) Analysis

Controls only when disease is rare, but it may lose efficiency.

Inverse Probability Weighing (IPW) If the P(select | X , D) is known, we could
use an IPW approach.

A few likelihood based proposals have been made to utilize the entire case
control sample, including Roeder, Carroll and Lindsay (1996), Lee, McMurchy and
Scott (1997), Jiang, Scott and Wild (2006), and Lin and Zeng (2009).

Those methods cannot be applied to quantile regression directly, since the latter
does not assume a parametric likelihood.

Review two recently developed methods for secondary quantile analysis
A weighted estimating equation approach combining observed and “counterfactual“
outcomes (Wei, Song, Liu and Ionita-Laza, JASA, 2016)

A superpopulation treatment (Liang, Ma, Wei and Carroll, JRSS-B, 2018)

Wei QR Short Course



Overview
Quantile regression for secondary phenotypes

A weighted estimating equation approach
Semiparametric efficient secondary quantile analysis

Estimation of quantile regression.

Mean regression E(Y |X) = XTβ ,

β = arg min
β

EY (Y − XTβ)2

β̂ = arg min
β

n
∑

i=1

(yi − xT
i β)

2.

Assume Qτ(Y |X) = XTβ(τ), then

β(τ) = arg min
β

EY (ρτ{Y − XTβ})

β̂(τ) = arg min
β

n
∑

i=1

ρτ{yi − xT
i β).

0

1

u

(u)
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Quantile regression estimating functions

Estimating function: Ψτ(X, Y ,β) =
�

τ− I{Y ≤ X>β}
�

X

At the true β0,τ,

EY

�

Ψτ(X, Y ,β0,τ) | X
�

= 0.

With a representative sample, one can obtain a consistent estimate by solving

n
∑

i=1

Ψτ(xi , yi ,β) = 0
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New estimating functions with counter-factual observations

Expand the original estimating functions

0 = E
�

Ψτ(X, Y ,β0,τ) | X
�

= EY

�

Ψτ(X, Y ,β0,τ) | X , D = 0
�

P(D = 0|X)

+EY

�

Ψτ(X, Y ,β0,τ) | X , D = 1
�

P(D = 1|X)

Suppose we are able to observe a counter-factual outcomes ỹi for each i . Then
one could construct unbiased estimation equations following (1) by

n
∑

i=1

�

Ψτ(xi , yi ,β)p(di | xi)+Ψτ(xi , ỹi ,β)p(1− di | xi)
	

= 0,

Wei QR Short Course



Overview
Quantile regression for secondary phenotypes

A weighted estimating equation approach
Semiparametric efficient secondary quantile analysis

New estimating functions with counter-factual observations

In reality, those pseudo counter-factual outcomes are unobserved. To get around
this, we propose to simulate counter-factual outcomes ỹi ’s from the conditional
quantile process

β0(τ | d) = arg min
β

EY [‖Ψτ(Y , X,β)‖ | X, D = d],∀τ (1)

— x>β0(τ | 0) is the conditional quantile function of y given x among controls,
– x>β0(τ | 1) defines that among disease population.
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Simulating the counter-factual outcomes

Estimate β0(τ | 0) and x>β0(τ | 1) from cases and controls separately on a fine
grid of τ’s.

For the i th subject, i = 1, . . . , n, we simulate its pseudo outcome eyi by

b

eyi = x>i
bβ(ui | 1− di), ui ∼ U(0, 1)

where ui is a random draw from Uniform (0, 1) distribution.

The sampling estimating equations are then

n
∑

i=1

Ψτ(xi , yi ,β)p(di | xi)+Ψτ(xi ,beyi ,β)p(1− di | xi) = 0. (2)
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Simulating the counter-factual outcomes

Simulating pseudo outcomes is subject to sampling uncertainty, and brings extra
variability into parameter estimation.

To further stabilize the variance, we suggest to repeat the above simulation
procedures m time, and use their average as final estimation.

bβn,τ = m−1
m
∑

`=1

bβ (`)
n,τ .
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Estimating P(D|X)

To estimate the conditional disease probability P(D|X), we assume a logistic
model

P(D = 1|X) = exp(γ0 + X>γ1)/{1+ exp(γ0 + X>γ1)}

Or, use the derived model from the primary analysis.

The slope γ1 can be consistently estimated by regressing di over xi using the case
control sample (Prentice and Pyke, 1979).

The intercept γ0 can be calculated by solving the equation

P0 =

∫

X

exp(γ0 + X>bγ1)/{1+ exp(γ0 + X>bγ1)dFX , (3)

where P0 is the overall disease prevalence, FX is the distribution of X.
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Estimating p(D|x)

In some cases, FX can be obtained from external resources. Such as single SNP
comparison, FX can be derived from the minor allele frequency ( MAF )

When the joint distribution of X is hard to obtain, we proposed to approximate γ0

by solving its sample version,

Òγ0 = arg min
γ0

�

P0 −
1

n

n
∑

i=1

exp(γ0 + x>i bγ1)/{1+ exp(γ0 + x>i bγ1)

�2

. (4)

P0 is estimated sample prevalence.
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Large sample properties of the proposed estimator

Theorem

Under Assumptions 1-5, for kn →∞ and kn/n→ 0, we have
p

n(bβn,τ −βn,τ)→ N(0, G−1
0 Σ0G−1

0 ),

where Σ0 = V1 +m−1V2 + 2U1 + {(m− 1)/m}U2
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Applications: Part of New York University Bellevue Asthma Registry

D: 387 asthmatics and 212 healthy controls

X : one of the 10 SNPs on the Thymic stromal lymphopoietin (TSLP) gene

Z : a continuous variable derived as the first principal component scores from 213
ancestry informative markers (AIMs) to adjust for population stratification.

Y : Forced expiatory volume in one second (FEV1), an important quantitative
measure of lung functions. Values of between 80 and 120 are considered normal.

Model
Qτ(FEV1) = β0,τ+ β1,τX + β2,τZ , (5)
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Estimated allelic effects in the mean regression model and quantile regression models at quantile levels of 0.15,

0.25, 0.5, 0.75 and 0.85

mean* τ= 0.15 τ= 0.25 τ= 0.5 τ= 0.75 τ= 0.85
SNPs Est. P-value Method Est. P-value Est. P-value Est. P-value Est. P-value Est. P-value

rs11466743 -8.1 0.009 SICO(10) -17.2 0.003 -6.7 0.015 -1.9 0.307 -7.5 0.000 -6.9 0.001
IPW -18.4 0.103 -3.9 0.733 -2.5 0.638 -6.8 0.216 -7.4 0.319

rs2289278 3.5 0.041 SICO(10) 0.5 0.691 -1.9 0.140 5.8 0.000 1.4 0.125 -0.8 0.336
IPW -1.2 0.641 -1.6 0.633 6.0 0.028 1.0 0.631 -0.6 0.780

rs11241090 -4.8 0.042 SICO(10) -3.7 0.189 -0.3 0.900 -0.7 0.671 -5.9 0.000 -2.5 0.145
IPW -3.5 0.678 2.0 0.696 -2.5 0.486 -7.0 0.099 -7.2 0.222

* Mean coefficients were estimated using the profile likelihood methods in Zeng and
Lin(2009).
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Estimated allelic effects in the mean regression model and quantile regression models at quantile levels of 0.15,

0.25, 0.5, 0.75 and 0.85

mean* τ= 0.15 τ= 0.25 τ= 0.5 τ= 0.75 τ= 0.85
SNPs Est. P-value Method Est. P-value Est. P-value Est. P-value Est. P-value Est. P-value

rs1898671 0.2 0.920 SICO(m=10) -2.7 0.000 -2.2 0.003 -1.8 0.010 -0.4 0.550 1.0 0.161
IPW -3.1 0.176 -2.1 0.307 -0.7 0.776 0.6 0.800 1.5 0.473

rs2289277 0.6 0.544 SICO(m=10) 3.0 0.000 2.6 0.000 0.2 0.797 0.5 0.309 -0.1 0.886
IPW 3.4 0.105 2.1 0.075 -0.5 0.800 0.2 0.872 -0.5 0.637

rs10035870 -1.1 0.659 SICO(m=10) 0.9 0.472 1.5 0.234 2.8 0.063 5.6 0.000 7.6 0.000
IPW -2.2 0.606 0.2 0.966 2.2 0.688 5.7 0.319 7.3 0.150

* Mean coefficients were estimated using the profile likelihood methods in Zeng and
Lin(2009).
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More recent development in secondary quantile analysis

Semi-parametric Efficient Estimation in Quantile Regression of Secondary
Analysis by Liang, Ma, Wei and Carroll (2018)

Based on the concept of "Hypothetical Population", where (1) the disease to
non-disease ratio is n1/n0 and (2) F(Y , X|D) = Ftrue(Y , X|D).

A case-control sample from the true population can be treated as a random
sample from the super-population.

Existing semi-parametric efficient estimation for iid sample can be applied to
enhance the efficiency.
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More recent development in secondary quantile analysis

The join likelihood of (Y , X, D) in the super-population can be written and
decompose as

f s
X,Y ,D(x, y , d)

= f s
D(d)f

t
X,Y |D(x, y , d) =

nd

n
f t
X,Y |D(x, y , d)

=
nd

n

η1(x)η2(ετ, x)f t
D|X,Y (d , x, y ,α)

∫

η1(x)η2(ετ, x)f t
D|X,Y (d , x, y ,α)dµ(x)µ(y)

=
ndη1(x)η2(y − βτ,c − xTβτ, x)f (d , x, y ,α)

n
∫

η1(x)η2(y − βτ,c − xTβτ, x)f (d , x, y ,α)dµ(x)µ(y)
,

Semi-parametric efficient estimation equation is consequently constructed.
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More recent development in secondary quantile analysis
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More recent development in secondary quantile analysis

The efficient estimating function can be estimated from the sample

The resulting quantile estimates are consistent and more efficient

The population prevalence could be unknown
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Numerical example

Table: Y = 0.5+ X +(1+ 0.3X)ε, εNormal

τ 0.1 0.25 0.5 0.75 0.9
Truth β 0.744 0.865 1 1.135 1.256
SICO mean 0.740 0.862 0.995 1.125 1.244
Semi mean 0.747 0.867 0.996 1.126 1.246
SICO sd 0.196 0.159 0.142 0.156 0.192
Semi sd 0.187 0.144 0.119 0.126 0.155
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Numerical example

Table: Y = 0.5+ X +(1+ 0.3X)ε, ε Gamma

τ 0.1 0.25 0.5 0.75 0.9
Truth β 1.097 1.163 1.268 1.412 1.578
SICO mean 1.096 1.158 1.260 1.404 1.583
Semi mean 1.100 1.163 1.265 1.408 1.561
SICO sd 0.089 0.103 0.131 0.178 0.277
Semi sd 0.084 0.096 0.115 0.150 0.231
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