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Introduction: the principle of conservation of energy
for classical solutions

Let us first focus our attention on the incompressible Euler system

∂tu + div(u ⊗ u) +∇p = 0,

div u = 0,

If u is a classical solution, then multiplying the balance equation by
u we obtain

1

2
∂t |u|2 + div

(
1

2
|u|2u

)
+ u · ∇p = 0.

Integrating the last equality over the space domain Ω yields

d

dt

∫
Ω

1

2
|u(x , t)|2dx =

∫
∂Ω

(
1

2
|u|2u

)
· nds.

Integrating over time in (0, t) (with u · n = 0 on ∂Ω), gives∫
Ω

1

2
|u(x , t)|2 dx =

∫
Ω

1

2
|u(x , 0)|2 dx .
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Weak solutions

However, if u is a weak solution, then∫
Ω

1

2
|u(x , t)|2 dx =

∫
Ω

1

2
|u(x , 0)|2 dx .

might not hold. Technically, the problem is that u might not be
regular enough to justify the chain rule in the above derivation.
Motivated by the laws of turbulence Onsager postulated that there
is a critical regularity for a weak solution to be a conservative one:

Conjecture, 1949

Let u be a weak solution of incompressible Euler system

If u ∈ Cα with α > 1
3 , then the energy is conserved.

For any α < 1
3 there exists a weak solution u ∈ Cα which

does not conserve the energy.
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Onsager conjecture for incompressible Euler system

Weak solutions of the incompressible Euler equations which do not
conserve energy were constructed:

Scheffer ’93, Shnirelman ’97 constructed examples of weak
solutions in L2(R2 × R) compactly supported in space and
time

De Lellis and Székelyhidi showed how to construct weak
solutions for given energy profile
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Still incompressible case

Significant progress has recently been made in constructing
energy-dissipating solutions slightly below the Onsager
regularity , see e.g.:

T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi, Anomalous
dissipation for 1/5-Hölder Euler flows. Ann. of Math. (2), 2015

T. Buckmaster, C. De Lellis, and L. Székelyhidi, Dissipative Euler

flows with Onsager-critical spatial regularity. Comm. Pure and Appl.

Math., 2015.

And the story is closed by the results:

Philip Isett, A Proof of Onsager’s Conjecture, Ann. of Math.
2018

Tristan Buckmaster, Camillo De Lellis, László Székelyhidi Jr.,

Vlad Vicol, Onsager’s conjecture for admissible weak solutions,

Comm. Pure Appl. Math. 2019
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Still incompressible case

Onsager conjecture:

If weak solution v has Cα (for α > 1
3 ) regularity then it conserves

energy. In the opposite case it may not conserve energy.

The first part of this assertion was proved in

P. Constantin, W. E, and E. S. Titi. Onsager’s conjecture on the energy

conservation for solutions of Euler’s equation. Comm. Math. Phys., 1994.

G. L. Eyink. Energy dissipation without viscosity in ideal hydrodynamics. I.

Fourier analysis and local energy transfer. Phys. D, 1994.

A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy

conservation and Onsager’s conjecture for the Euler equations.

Nonlinearity, 2008.

The standard technique is based either on the convolution of the
Euler system with a standard family of mollifiers or truncation in
Fourier space based on Littlewood-Paley decomposition.
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Besov spaces

The elements of Besov space Bα,∞p (Ω), where Ω = (0,T )× Td or
Ω = Td are functions w for which the norm

‖w‖Bα,∞p (Ω) := ‖w‖Lp(Ω) + sup
ξ∈Ω

‖w(·+ ξ)− w‖Lp(Ω∩(Ω−ξ))

|ξ|α

is finite (here Ω− ξ = {x − ξ : x ∈ Ω}).
It is then easy to check that the definition of the Besov spaces
implies

‖w ε − w‖Lp(Ω) ≤ Cεα‖w‖Bα,∞p (Ω)

and
‖∇w ε‖Lp(Ω) ≤ Cεα−1‖w‖Bα,∞p (Ω).
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Onsager’s conjecture for compressible Euler system
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Compressible Euler system

We consider now the isentropic Euler equations,

∂t(ρu) + div(ρu ⊗ u) +∇p(ρ) = 0,

∂tρ+ div(ρu) = 0.
(1)

We will use the notation for the so-called pressure potential
defined as

P(ρ) = ρ

∫ ρ

1

p(r)

r2
dr .

E. Feireisl, P. G., A. Świerczewska-Gwiazda, and E. Wiedemann.

Regularity and Energy Conservation for the Compressible Euler Equations.

Arch. Rational Mech. Anal., 2017.
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Theorem

Let %, u be a solution of (1) in the sense of distributions. Assume

u ∈ Bα,∞3 ((0,T )×Td), %, %u ∈ Bβ,∞3 ((0,T )×Td), 0 ≤ % ≤ % ≤ %

for some constants %, %, and 0 ≤ α, β ≤ 1 such that

β > max

{
1− 2α;

1− α
2

}
. (2)

Assume further that p ∈ C 2[%, %], and, in addition

p′(0) = 0 as soon as % = 0.

Then the energy is locally conserved in the sense of distributions
on (0,T )× Ω, i.e.

∂t

(
1

2
%|u|2 + P(%)

)
+ div

[(
1

2
%|u|2 + p(%) + P(%)

)
u

]
= 0.
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The Divergence-Measure Condition

Asssume the hypotheses of the FGŚW Theorem, except we now
allow for 1 < γ < 2 and ρ ≥ 0. Assume in addition div v is a
bounded measure. Then the energy is conserved.

I. Akramov, T. Dȩbiec., J. Skipper, E. Wiedemann. Energy conservation

for the compressible Euler and Navier-Stokes equations in vacuum. to

appear in Analysis & PDE, 2019.
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Sharpness of assumptions

Shocks provide examples that show that our assumptions are
sharp:

A shock solution dissipates energy, but ρ and u are in

BV ∩ L∞, which embeds into B
1/3,∞
3 .

Hence such a solution satisfies (2) with equality but fails to
satisfy the conclusion.
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Time regularity

The hypothesis on temporal regularity can be relaxed provided

% > 0

Indeed, in this case (%u)ε

%ε can be used as a test function in the
momentum equation, cf.

T. M. Leslie and R. Shvydkoy. The energy balance relation for weak

solutions of the density-dependent Navier-Stokes equations. J. Differential

Equations, 2016.
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Some references to other systems

R. E. Caflisch, I. Klapper, and G. Steele. Remarks on singularities,

dimension and energy dissipation for ideal hydrodynamics and MHD.

Comm. Math. Phys., 1997.

E. Kang and J. Lee. Remarks on the magnetic helicity and energy

conservation for ideal magneto-hydrodynamics. Nonlinearity, 2007.

R. Shvydkoy. On the energy of inviscid singular flows. J. Math. Anal.

Appl., 2009.

C. Yu. Energy conservation for the weak solutions of the compressible

Navier–Stokes equations. Arch. Rational Mech. Anal., 2017.

T. D. Drivas and G. L. Eyink. An Onsager singularity theorem for turbulent

solutions of compressible Euler equations. Comm. in Math. Physics, 2017.
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General conservation laws

It is easy to notice similarities in the statements regarding
sufficient regularity conditions guaranteeing energy/entropy
conservation for various systems of equations of fluid
dynamics.

Especially the differentiability exponent of 1
3 is a recurring

condition.

One might therefore anticipate that a general statement could
be made, which would cover all the above examples and more.
Indeed, consider a general conservation law of the form

divX (G (U(X ))) = 0.

P. G., M. Michálek, A. Świerczewska-Gwiazda A note on weak solutions

of conservation laws and energy/entropy conservation. Arch. Rational

Mech. Anal., 2018.
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We consider the conservation law of the form

divX (G (U(X ))) = 0. (3)

Here U : X → O is an unknown and G : O →Mn×(d+1) is a
given, where X is an open subset of Rd+1 or T3 ×R and the set O
is open in Rn. It is easy to see that any classical solution to (3)
satisfies also

divX (Q(U(X ))) = 0, (4)

where Q : O → Rs×(d+1) is a smooth function such that

DUQj(U) = B(U)DUGj(U), for all U ∈ O, j ∈ 0, · · · , k, (5)

for some smooth function B : O →Ms×n. The function Q is
called a companion of G and equation (4) is called a companion
law of the conservation law (3).
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Weak solutions

In many applications some relevant companion laws are
conservation of energy or conservation of entropy. We consider the
standard definition of weak solutions to a conservation law.

Definition

We call the function U a weak solution to (3) if G (U) is locally
integrable in X and the equality∫

X
G (U(X )) : DXψ(X )dX = 0

holds for all smooth test functions ψ : X → Rn with a compact
support in X .
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Does such an abstract framework cover any physical
systems?

Consider the case where X = T3 × (0,T ) and we write X = (x , t).
Then G can be written in the form

G (U) = (F (U),A(U))

for some A : O → Rn and F : O → Rn×k , so that the conservation
law (3) reads

∂t [A(U(x , t))] + divx F (U(x , t)) = 0,

or, in weak formulation,∫ T

0

∫
T3

∂tψ(x , t) · A(U(x , t)) +∇xψ(x , t) : F (U(x , t)) dxdt = 0

for any ψ ∈ C 1
c (T3 × (0,T );Rn).
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Does such an abstract framework covers any
physical systems?

Setting Q(U) = (q(U), η(U)) for q : O → Rs×k and η : O → Rs ,
we accordingly consider companion laws of the form

∂t [η(U(x , t))] + divx q(U(x , t)) = 0,

where η and q satisfy

DUη(U) = B(U)DUA(U),

DUqj(U) = B(U)DUFj(U) for j = 1, . . . , k

for some smooth map B : O → Rs×n.
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Example – Inviscid magnetohydrodynamics –
compressible and incompressible

We will recall only the incompressible case. Let us consider the
system

∂tv + div(v ⊗ v − h ⊗ h) +∇x(p +
1

2
|h|2) = 0,

∂th + div(v ⊗ h − h ⊗ v) = 0,

div v = 0, div h = 0

where v : Q → Rn and h : Q → Rn and p : Q → R. The system
describes the motion of an ideal electrically conducting fluid.
Here U = (v , h, p), A(U) = (v , h, 0), and

F (v , h) =

(
v ⊗ v − h ⊗ h + (p +

1

2
|h|2)I, v ⊗ h − h ⊗ v , v

)
.

The entropy is given by η = 1
2 (|v |2 + |h|2) and the entropy flux is

q = 1
2 (|v |2 + |h|2)v − (v · h)h.
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Example – nonlinear elastodynamics

We recall a quasi-linear wave equation that might be interpreted as
a model of nonlinear elastodynamics, when we understand
y : Ω× R+ → R3 as a displacement vector

∂2y

∂t2
= divx S(∇y).

In the above equation S is a gradient of some function
G : M3×3 → [0,∞). We rewrite this equation as a system,
introducing the notation vi = ∂tyi and Fiα = ∂yi

∂xα
. Then

U = (v ,F) solves the system

∂vi
∂t

=
∂

∂xα

(
∂G

∂Fiα

)
,

∂Fiα

∂t
=
∂vi
∂xα

.

With A(U) ≡ id and F (U) =
(
∂G
∂Fiα

, v
)

we have an entropy

η(U) = 1
2 |v |

2 + G (F) and an entropy flux qα(U) = vi
∂G(F)
∂Fiα

.
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How much regularity of a weak solution is required
so that it also satisfies the companion law?

Theorem (P.G., Michálek, Świerczewska-Gwiazda, ARMA
2018)

Let U ∈ Bα3,∞(X ;O) be a weak solution of (3) with α > 1
3 .

Assume that G ∈ C 2 is endowed with a companion law with flux
Q ∈ C ) for which there exists B ∈ C 1 related through identity (5)
and all the following conditions hold

O is convex,

B ∈W 1,∞(O;M1×n),

|Q(V )| ≤ C (1 + |V |3) for all V ∈ O,
sup

i ,j∈1,...,d
‖∂Ui

∂Uj
G (U)‖C(O;Mn×(k+1)) < +∞.

Then U is a weak solution of the companion law (4) with the
flux Q.

P. Gwiazda, M. Michálek and A. Świerczewska-Gwiazda,

A note on weak solutions of conservation laws and energy/entropy

conservation. arxiv.1706.10154, 2017.
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The essential part of the proof of this Theorem pertains the
estimation of the nonlinear commutator

[G (U)]ε − G ([U]ε).

It is based on the following observation:

Lemma

Let O be a convex set, U ∈ L2
loc(X ,O), G ∈ C 2(O;Rn) and let

sup
i ,j∈1,...,d

‖∂Ui
∂Uj

G (U)‖L∞(O) < +∞.

Then there exists C > 0 depending only on η1, second derivatives
of G and k (dimension of O) such that

‖[G (U)]ε − G ([U]ε)‖Lq(K)

≤ C
(
‖[U]ε − U‖2

L2q(K) + sup
Y∈supp ηε

‖U(·)− U(· − Y )‖2
L2q(K)

)
for q ∈ [1,∞), where K ⊆ X satisfies K ε ⊆ X .
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Remarks

Due to the assumption on the convexity of O the previous
theorem could be deduced from the result for compressible
Euler system (Feireisl, G., Świerczewska-Gwiazda, Wiedemann
ARMA 2017).

It is worth noting that the convexity of O might not be
natural for all applications (this is e.g. the case of the
polyconvex elasticity).
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A few words about polyconvex elasticity

Let us consider the evolution equations of nonlinear elasticity

∂tF = ∇xv

∂tv = divx (DFW (F ))
in X ,

for an unknown matrix field F : X →Mk×k , and an unknown
vector field v : X → Rk . Function W : U → R is given. For many
applications, U = Mk×k

+ where Mk×k
+ denotes the subset of Mk×k

containing only matrices having positive determinant. Let us point
out that Mk×k

+ is a non–convex connected set.
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To this purpose, we study the case of non–convex O

Having O non–convex, we face the problem that [U]ε does
not have to belong to O.

The convexity was crucial to conduct the Taylor expansion
argument in error estimates.

However, a suitable extension of functions G , B and Q does
not alter the previous proof significantly.
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How much regularity of a weak solution is required
so that it also satisfies the companion law?

Theorem

Let U ∈ Bα,∞3 (X ;O) be a weak solution of (3) with α > 1
3 .

Assume that G ∈ C2(O;Mn×(d+1)) is endowed with a companion
law with flux Q ∈ C(O;Ms×(d+1)) for which there exists
B ∈ C1(O;Ms×n) related through identity (5) and the essential
image of U is compact in O.
Then U is a weak solution of the companion law (4) with the
flux Q.
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Remarks

the generality of the above theorem is achieved at the expense
of optimality of the assumptions.

However given additional information on the structure of the
problem at hand one might be able to relax some of these
assumptions.

the theorem provides for instance a conservation of energy
result for the system of polyconvex elastodynamics,
compressible hydrodynamics et al.
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Result of Constantin, E, Titi

Theorem

Let u ∈ L3([0,T ],Bα,∞3 (T3)) ∩ C([0,T ], L2(T3)) be a weak
solution of the incompressible Euler system. If α > 1

3 , then∫
T3

1

2
|u(x , t)|2 dx =

∫
T3

1

2
|u(x , 0)|2 dx

for each t ∈ [0,T ].

Piotr Gwiazda Onsager’s conjecture for conservation laws



Additional structure of equations

The first lemma gives a sufficient condition to drop the Besov
regularity with respect to some variables. It is connected with the
columns of G .

Lemma

Let G = (G1, . . . ,Gs ,Gs+1, . . .Gk) where G1, . . . ,Gs are affine
vector–valued functions and X = Y × Z where Y ⊆ Rs and
Z ⊆ Rk+1−s . Then it is enough to assume that
U ∈ L3(Y;Bα3,∞(Z)) in the main theorem.

We can omit the Besov regularity w.r.t. some components of U.

Lemma

Assume that U = (V1,V2) where V1 = (U1, ...,Us) and
V2 = (Us+1, . . . ,Un). If B does not depend on V1 and
G = G (V1,V2) = G1(V1) + G2(V2) and G1 is linear then it is
enough to assume U1, . . . ,Us ∈ L3(X ) in the main theorem.
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Boundary

Until very recently the studies on energy/entropy conservation
for various systems were carried out in the periodic setting or
in the whole space.

It however turns out that an extension to bounded domains is
not that strenuous to do, provided proper care is taken of the
boundary conditions.

Claude Bardos, P. G., A. Świerczewska-Gwiazda, Edriss S. Titi, Emil
Wiedemann, On the Extension of Onsager’s Conjecture for General
Conservation Laws, Journal of Nonlinear Science, 2019.

Claude Bardos, P. G., A. Świerczewska-Gwiazda, Edriss S. Titi, Emil

Wiedemann, Onsager’s Conjecture in Bounded Domains for the

Conservation of Entropy and other Companion Laws, arXiv:1902.07120
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Boundary

The study of sufficient conditions for energy conservation in
bounded domains has been undertaken firstly for the
incompressible Euler with impermeability boundary condition

v · n = 0

Consequently the energy flux vanishes on the boundary in the
normal direction

q(v , p) · n =

(
1

2
|v |2 + p

)
v · n = 0.

C. Bardos, E. Titi. Onsager’s Conjecture for the Incompressible Euler

Equations in Bounded Domains. Arch. Rational Mech. Anal. 2018

The authors make an assumption on v only:
v ∈ L3(0,T ;Cα(Ω)) and later recover from the equation the
information on the regularity of the pressure p, i.e.
p ∈ L3/2(0,T ;Cα(Ω)), what allows to justify the meaning of
the above boundary condition point-wise.
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Boundary

C. Bardos, E. Titi, and E. Wiedemann. Onsager’s conjecture with physical

boundaries and an application to the vanishing viscosity limit.

Communications in Mathematical Physics, 2019.

Here the authors relax this assumption, requiring only interior
Hölder regularity and continuity of the normal component of the
energy flux near the boundary.
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Connections to Kolmogorov’s theory of turbulence -
incompressible Euler equations

According to Kolmogorov the energy spectrum function E (k) in the
inertial range in a turbulent flow is given by a power law relation

E (k) = Cε
2
3 k−

5
3 ,

where k is the modulus of the wave vector corresponding to some
harmonics in the Fourier representation of the flow velocity field,
and by ε we mean the ensemble average of the energy dissipation
rate ε = v〈|∇u|2〉. This relation, stated in physical space,
corresponds exactly to the conjecture of Onsager up to the
difference that Kolmogorov theory concerns statistically averaged
quantities.
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Higher order systems
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Euler-Korteweg Equations

We now consider the isothermal Euler-Korteweg system in the form

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) = −ρ∇x

(
h′(ρ) +

κ′(ρ)

2
|∇xρ|2 − div(κ(ρ)∇xρ)

)
,

where ρ ≥ 0 is the scalar density of a fluid, u is its velocity,
h = h(ρ) is the energy density and κ(ρ) > 0 is the coefficient of
capillarity.
In conservative form

∂t(ρu) + div(ρu ⊗ u) = div S ,

∂tρ+ div(ρu) = 0,

where S is the Korteweg stress tensor

S = [−p(ρ)−ρκ
′(ρ) + κ(ρ)

2
|∇xρ|2+div(κ(ρ)ρ∇xρ)]I−κ(ρ)∇xρ⊗∇xρ

where the local pressure is defined as p(ρ) = ρh′(ρ)− h(ρ).
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Energy Equality

It can be shown that smooth solutions to the EK system satisfy
the balance of total (kinetic and internal) energy

∂t

(
1

2
ρ|u|2 + h(ρ) +

κ(ρ)

2
|∇xρ|2

)
+ div

(
ρu

(
1

2
|u|2 + h′(ρ) +

κ′(ρ)

2
|∇xρ|2 − div(κ(ρ)∇xρ)

)
−κ(ρ)∂tρ∇ρ) = 0.
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Energy Conservation for Euler-Korteweg equations

Theorem

Let (ρ, u) be a solution to the EK system with constant capillarity
in the sense of distributions. Assume

u,∇xu ∈ Bα,∞3 ((0,T )×Td), ρ, ρu,∇xρ,∆ρ ∈ Bβ,∞3 ((0,T )×Td),

where 0 < α, β < 1 such that min(2α + β, α + 2β) > 1.
Then the energy is locally conserved, i.e.

∂t(
1

2
ρ|u|2+h(ρ) +

κ

2
|∇xρ|2)

+ div(
1

2
ρu|u|2 + ρ2u − κρu∆ρ− κ∂tρ∇ρ) = 0

in the sense of distributions on (0,T )× Td .

T.Dȩbiec, P.G., A.Świerczewska-Gwiazda, A.Tzavaras. Conservation of

energy for the Euler-Korteweg equations. Calculus of Variations and

PDEs, 2018 Piotr Gwiazda Onsager’s conjecture for conservation laws



Some remarks:

1. In 1-D isentropic Euler equation has infinite number of entropies

DiPerna, Ronald J. Convergence of the viscosity method for isentropic gas
dynamics Comm. Math. Phys., 1983

Lions, P.-L. and Perthame, B. and Tadmor, E. Kinetic formulation of the

isentropic gas dynamics and p-systems Comm. Math. Phys., 1993

2. Averaging contraction principle for scalar conservation laws
(measure valued -measure valued uniqueness)

DiPerna, Ronald J. Measure-valued solutions to conservation laws
Arch. Rational Mech. Anal., 1985

Szepessy, Anders An existence result for scalar conservation laws using
measure valued solutions
Comm. Partial Differential Equations, 1989

Dȩbiec, Tomasz, P.G.,  Lyczek, Kamila and Świerczewska-Gwiazda,

Agnieszka, Relative entropy method for measure-valued solutions in

natural sciences Topol. Methods Nonlinear Anal. 2018
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Thank you for your attention
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