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∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u) +∇p(%) = 0

Unknowns:

density % : [0,T )× Ω→ R+

velocity u : [0,T )× Ω→ Rn

Variables:

time t ∈ [0,T )

spatial variable x = (x1, . . . , xn) ∈ Ω ⊂ Rn, n = 2, 3

The pressure p = p(%) is a given function.

Example: Polytropic pressure law

p(%) = %γ where γ > 1



Initial boundary value problem

Initial condition:

%(0, ·) = %0 , u(0, ·) = u0

Boundary conditions:

Periodic boundary condition

Impermeability boundary condition: u · n|∂Ω = 0

...



Admissible solutions

We supplement the Euler equations with the energy inequality

∂t

(
1
2%|u|

2 + P(%)
)

+ div
[(

1
2%|u|

2 + P(%) + p(%)
)
u
]
≤ 0

where P = P(%) is the pressure potential.

Definition

A weak solution is called admissible if the energy inequality is
fulfilled in the sense of distributions.
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Convex integration for incompressible Euler

De Lellis and Székelyhidi showed existence of infinitely many
solutions (v, p) to the incompressible Euler equations

div v = 0,

∂tv + div(v ⊗ v) +∇p = 0,

where one can prescribe the kinetic energy 1
2 |v(t, x)|2 = e(t, x) for

a.e. (t, x).

C. De Lellis and L. Székelyhidi Jr. “The Euler equations as a differential inclusion”.
In: Ann. of Math. (2) 170.3 (2009), pp. 1417–1436

C. De Lellis and L. Székelyhidi Jr. “On admissibility criteria for weak solutions of the
Euler equations”. In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225–260



Non-uniqueness results

Theorem

For any pressure function p(%) there exist initial data (%0,u0) for
which there are infinitely many admissible weak solutions (%,u).

C. De Lellis and L. Székelyhidi Jr. “On admissibility criteria for weak solutions of the
Euler equations”. In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225–260

Theorem

For any pressure function p(%) and any given periodic initial
density %0 ∈ C 1 there exist a periodic initial velocity u0 ∈ L∞ for
which there are infinitely many space-periodic admissible weak
solutions (%,u).

E. Chiodaroli. “A counterexample to well-posedness of entropy solutions to the
compressible Euler system”. In: J. Hyperbolic Differ. Equ. 11.3 (2014), pp. 493–519

E. Feireisl. “Maximal dissipation and well-posedness for the compressible Euler
system”. In: J. Math. Fluid Mech. 16 (2014), pp. 447–461
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Riemann problem

Here Ω = R2, T =∞.

Write u = (v , u).

Riemann initial data

where %± ∈ R+ and u± ∈ R2 are constant and v− = v+ = 0.

(%,u)(0, x) = (%0,u0)(x) :=

{
(%−,u−) if x2 < 0

(%+,u+) if x2 > 0
,

x1

x2

(%−,u−)

(%+,u+)



Corresponding 1-d Riemann problem

Solve the corresponding 1-d Riemann problem

∂t%+ ∂x2(%u) = 0,

∂t(%u) + ∂x2

(
%u2 + p(%)

)
= 0,

(%, u)(0, x2) = (%0, u0)(x2) :=

{
(%−, u−) if x2 < 0

(%+, u+) if x2 > 0
.



Solution of the corresponding 1-d Riemann problem

Constant states seperated by two waves

1-wave: Either a shock or a rarefaction wave

2-wave: Either a shock or a rarefaction wave

x2

t

%M uM

%− u− %+ u+

σ− σ+



Possible structure of the 1-d Riemann solution

1-wave 2-wave
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- raref.
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G.-Q. Chen and J. Chen. “Stability of rarefaction waves
and vacuum states for the multidimensional Euler
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Basic ideas of the non-uniqueness proof

. Definition: fan partition.

. Define a piecewise constant adm. fan subsolution (%,u).

. Apply convex integration on Ω1 to obtain ũ1.

. Define the fan subsolution such that (% , u + ũ1) is a solution.
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Basic ideas of the non-uniqueness proof

. Definition: fan partition.

. Define a piecewise constant adm. fan subsolution (%,u).

. Apply convex integration on Ω1 to obtain ũ1.

. Define the fan subsolution such that (% , u + ũ1) is a solution.

Proposition

Let (u,U) ∈ R2 × S2×2
0 and c > 0 such that u⊗ u− U < c

2 I.
Furthermore let Ω ⊂ R× R2 open. Then there exist infinitely many
maps (ũ, Ũ) ∈ L∞(R× R2,R2 × S2×2

0 ) with the following properties:

ũ and Ũ vanish outside Ω,

div ũ = 0 and ∂t ũ + div Ũ = 0 in the sense of distributions,

(u + ũ)⊗ (u + ũ)− (U + Ũ) = c
2 I a.e. on Ω.

E. Chiodaroli, C. De Lellis, and O. Kreml. “Global ill-posedness of the isentropic system of
gas dynamics”. In: Comm. Pure Appl. Math. 68.7 (2015), pp. 1157–1190
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Definition: admissible fan subsolution (1)

An adm. fan subsolution consists of 4 piecewise constant functions
(%,u,U, c) : (0,∞)× R2 → (R+ × R2 × S2×2

0 × R+), such that:

1 There exists a fan partition Ω−,Ω1,Ω+ such that

(%,u,U, c) =

{ (
%± , u± , U± , c±

)
on Ω±(

%1 , u1 , U1 , c1

)
on Ω1

where U± = u± ⊗ u± − 1
2 |u±|

2 I and c± = |u±|2.

2 The following inequality holds in the sense of definiteness

u1 ⊗ u1 − U1 <
1
2 c1 I.



Definition: admissible fan subsolution (2)

3 The following identities hold in the sense of distributions:

4 The energy inequality is fulfilled in the sense of distributions:

∂t%+ div(%u) = 0,

∂t(%u) + div(%U) +∇
(

p(%) + 1
2% c

)
= 0.

∂t

(
1
2% c + P(%)

)
+ div

[(
1
2% c + P(%) + p(%)

)
u
]
≤ 0.



Condition for the existence of infinitely many solutions

Proposition

Existence of an

admissible fan subsolution
=⇒ Existence of infinitely

many adm. weak solutions

E. Chiodaroli, C. De Lellis, and O. Kreml. “Global ill-posedness of the isentropic
system of gas dynamics”. In: Comm. Pure Appl. Math. 68.7 (2015), pp. 1157–1190

Translate the definition of an admissible fan subsolution into a
system of algebraic equations and inequalities.

More precisely we obtain a system of 6 equations and
4 inequalities for 8 unknowns.
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Solution to the algebraic equations and inequalities

Two shocks:

. Small perturbation of the 1-d Riemann solution yields a
solution to the algebraic equations and inequalities.

E. Chiodaroli and O. Kreml. “On the energy dissipation rate of solutions to the
compressible isentropic Euler system”. In: Arch. Ration. Mech. Anal. 214.3 (2014),
pp. 1019–1049
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Solution to the algebraic equations and inequalities

One shock, one rarefaction:

. First notice that if the rarefaction is “small” then there is a
solution to the algebraic equations and inequalities.

. Introduce a rarefaction to an intermediate state to obtain
such a small rarefaction.

A single shock:

. Introduce a shock wave to an intermediate state to obtain a
small rarefaction.

C. Klingenberg and S. Markfelder. “The Riemann problem for the multidimensional
isentropic system of gas dynamics is ill-posed if it contains a shock”. In: Arch.
Ration. Mech. Anal. 227.3 (2018), pp. 967–994
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Further results

Theorem

There exist Lipschitz continuous initial data (%0,u0) for which
there are infinitely many admissible weak solutions (%,u).

E. Chiodaroli, C. De Lellis, and O. Kreml. “Global ill-posedness of the isentropic
system of gas dynamics”. In: Comm. Pure Appl. Math. 68.7 (2015), pp. 1157–1190

Theorem

There exist Riemann initial data (%0,u0) for which there are
infinitely many energy-conserving weak solutions (%,u).

C. Klingenberg and S. Markfelder. “Non-uniqueness of energy-conservative solutions
to the isentropic compressible two-dimesnsional Euler equations”. In: J. Hyperbolic
Differ. Equ. 15.4 (2018), pp. 721–730
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Compressible Euler equations
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Compressible Euler equations

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u) +∇p(%, ϑ) = 0

∂t

(
1
2%|u|

2 + %e(%, ϑ)
)

+ div
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1
2%|u|

2 + %e(%, ϑ) + p(%, ϑ)
)
u
]

= 0

Unknowns:

density % : [0,T )× Ω→ R+

velocity u : [0,T )× Ω→ Rn

temperature ϑ : [0,T )× Ω→ R+

Variables:

time t ∈ [0,T )

spatial variable x = (x1, . . . , xn) ∈ Ω ⊂ Rn, n = 2, 3



Compressible Euler equations

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u) +∇p(%, ϑ) = 0

∂t

(
1
2%|u|

2 + %e(%, ϑ)
)

+ div
[(

1
2%|u|

2 + %e(%, ϑ) + p(%, ϑ)
)
u
]

= 0

The pressure p = p(%, ϑ) and the internal energy e = e(%, ϑ)
are given functions.

Example (Ideal gas)

p(%, ϑ) = %ϑ

e(%, ϑ) = 1
γ−1ϑ where γ > 1 (adiabatic exponent)



Admissible solutions

Definition

A weak solution is called admissible if the entropy inequality

∂t

(
% s(%, ϑ)

)
+ div

(
% s(%, ϑ)u

)
≥ 0,

is fulfilled in the sense of distributions.

Here s(%, ϑ) is the entropy, e. g. for the ideal gas

s(%, ϑ) = 1
γ−1 log ϑ− log %.



Non-uniqueness results for the full Euler equations

Theorem

For any given piecewise-constant initial density %0 and temperature
ϑ0 there exists an initial velocity u0 ∈ L∞ for which there are
infinitely many admissible weak solutions (%,u, ϑ).

E. Feireisl, C. Klingenberg, O. Kreml, and S. Markfelder. On oscillatory solutions to
the complete Euler system. submitted. 2017. arXiv: 1710. 10918

see also:
T. Luo, C. Xie, and Z. Xin. “Non-uniqueness of admissible weak solutions to
compressible Euler systems with source terms”. In: Adv. Math. 291 (2016),
pp. 542–583

https://arxiv.org/abs/1710.10918
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Riemann problem

Consider ideal gas, i. e.

p(%, ϑ) = %ϑ,

e(%, ϑ) = 1
γ−1ϑ.

It is more convenient to consider
p as an unknown instead of ϑ.



Riemann problem

Riemann initial data

where %± ∈ R+, u± ∈ R2 and p± ∈ R+ are constant and
v− = v+ = 0 (remember that u = (v , u)).

Consider ideal gas, i. e.

p(%, ϑ) = %ϑ,

e(%, ϑ) = 1
γ−1ϑ.

It is more convenient to consider
p as an unknown instead of ϑ.

(%,u, p)(0, x) = (%0,u0, p0)(x) :=

{
(%−,u−, p−) if x2 < 0

(%+,u+, p+) if x2 > 0
,

x1

x2

(%−,u−, p−)

(%+,u+, p+)



Corresponding 1-d Riemann problem

Solve the corresponding 1-d Riemann problem

∂t%+ ∂x2(%u) = 0,

∂t(%u) + ∂x2

(
%u2 + p

)
= 0,

∂t

(
1
2%u2 + %e(%, p)

)
+ ∂x2

[(
1
2%u2 + %e(%, p) + p

)
u
]

= 0,

(%, u, p)(0, x2) = (%0, u0, p0)(x2) :=

{
(%−, u−, p−) if x2 < 0

(%+, u+, p+) if x2 > 0
.



Solution of the corresponding 1-d Riemann problem

Constant states seperated by three waves

1-wave: Either a shock or a rarefaction wave

2-wave: Contact discontinuity

3-wave: Either a shock or a rarefaction wave

x2

t

pM pM

uM uM

%M+%M−

%−

u−

p−

%+

u+

p+

σ−

uM

σ+
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Idea of the non-uniqueness proof
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.
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=⇒ Existence of infinitely

many adm. weak solutions

. The definition of an admissible fan subsolution can be
translated into a system of algebraic equations and
inequalities.

. As in the isentropic case, a small perturbation of the 1-d
Riemann solution yields a solution to the algebraic equations
an inequalities.
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