Weak containment vs amenability for group actions and groupoids

Claire Anantharaman-Delaroche Université d'Orléans

Classification Problems in von Neumann Algebras September 30, 2019

SUMMARY

- The weak containment property (WCP)
 - Definitions
 - Examples where we have the WCP
- Amenable actions on operator algebras
 - von Neumann algebras
 - C*-algebras
- WCP vs amenability for transformation groupoids
- WCP vs amenability for group bundles
- Higson-Lafforgue-Skandalis (HLS) groupoids
- Exact groupoids

WEAK CONTAINMENT PROPERTY (WCP)

▶ Let \mathcal{G} be a **locally compact groupoid** with Haar system (e.g. $\mathcal{G} = X \rtimes G$ the transformation groupoid for an action of a locally compact group G on a locally compact space X). We say that \mathcal{G} has the **WCP** *if its full* C^* -algebra $C^*(\mathcal{G})$ coincides with its reduced C^* -algebra $C^*_r(\mathcal{G})$. For $\mathcal{G} = X \rtimes G$, this means that $C_0(X) \rtimes G = C_0(X) \rtimes_r G$.

▶ We say that an action $G \frown A$ of a locally compact group G on a C^* -algebra A has the WCP if $A \rtimes G = A \rtimes_r G$.

Problem : find "good conditions" for the WCP to be realized.

POSITIVE RESULTS for the WCP

 \sim Let G be a locally compact group.

• *G* has the WCP iff it is amenable (*Hulanicki 1964, 1966*). Moreover, in this case $C_r^*(G)$ is nuclear (*Guichardet 1969*).

- $C_r^*(G)$ nuclear $\neq G$ amenable in general (*Takesaki 1964, Connes 1976*)
- $C_r^*(G)$ nuclear $\Rightarrow G$ amenable when G is discrete (*Lance 1973*).

 \sim If \mathcal{G} is an amenable I.c. groupoid, then \mathcal{G} has the WCP and $C_r^*(\mathcal{G})$ is nuclear (*Renault 1980*). If $C_r^*(\mathcal{G})$ is nuclear and the isotropy groups are discrete then \mathcal{G} is amenable.

 \sim G \sim A with G amenable has the WCP (*Takai 1975*). Moreover if A is nuclear then $A \rtimes_r G$ is nuclear (*Rosenberg 1977*)

Characterisation of actions such that $A \rtimes_r G$ is nuclear for G discrete

Theorem (AD 1987) : Let $G \curvearrowright A$ be an action of a **discrete** group on a C^* -algebra A. The following conditions are equivalent :

- (i) $A \rtimes G$ is nuclear;
- (ii) $A \rtimes_r G$ is nuclear;
- (iii) the von Neumann algebra $A^{**} \rtimes_{vn} G$ is injective;
- (iv) the action $G \curvearrowright A^{**}$ (by bitransposition) is amenable in the von Neumann sense and A^{**} is injective.

✓ What is an amenable action on a von Neumann algebra?

AMENABLE ACTIONS ON von NEUMANN ALGEBRAS

► The notion of amenable action of a l.c. group G on $L^{\infty}(X, \mu)$ was introduced by Zimmer 1977 in terms of a fixed point property.

 \sim Later on he proved, when *G* is discrete, that $G \curvearrowright L^{\infty}(X, \mu)$ is amenable if there exists an equivariant norm-one projection

 $L^{\infty}(G) \otimes L^{\infty}(X,\mu) \to L^{\infty}(X,\mu).$

This was extended to any l.c. group G by Adams-Elliott-Giordano 1994.

 \sim Zimmer 1977 : $L^{\infty}(X,\mu) \rtimes_{vn} G$ with G discrete is injective iff $G \curvearrowright L^{\infty}(X,\mu)$ is amenable.

AMENABLE ACTIONS ON von NEUMANN ALGEBRAS

▶ Definition (AD 1979) : We say that a continuous action of a l.c. group *G* on a von Neumann algebra *M* is amenable iff there exists an equivariant norm-one projection $L^{\infty}(G) \otimes M \to M$.

We have (AD 1980) : $G \frown M$ is amenable iff $G \frown Z(M)$ is amenable . Proposition (AD 1980) : Let $G \frown M$ where G is a discrete group. TFAE :

- $G \curvearrowright M$ is amenable and M is injective;
- $M \rtimes_{vn} G$ is injective.

AMENABLE ACTIONS ON von NEUMANN ALGEBRAS, cont'd

▶ **Definition** : Let α : $G \curvearrowright A$. A function θ : $G \to A$ is **positive type** (w.r.t. the action) if for any $g_1, \dots, g_n \in G$ the matrix $[\alpha_{g_i}(\theta(g_i^{-1}g_i))] \in M_n(A)$ is non-negative.

Proposition (AD 1987) : $G \curvearrowright M$, with G discrete, is amenable iff there exists a net $\theta_i : G \to Z(M)$ of **finitely supported** positive type functions such that $\theta_i(e) \leq 1$ for each i and $\lim_{i\to\infty} \theta_i(g) = 1$ ultraweakly for each $g \in G$.

AMENABLE ACTIONS ON C*-ALGEBRAS

Recall :

Theorem : Let $G \curvearrowright A$ be an action of a **discrete** group on a C^* -algebra A. The following conditions are equivalent :

- (i) $A \rtimes G$ is nuclear;
- (ii) $A \rtimes_r G$ is nuclear;
- (iii) the von Neumann algebra $A^{**} \rtimes_{vn} G$ is injective;
- (iv) the action $G \curvearrowright A^{**}$ (by bitransposition) is amenable in the von Neumann sense and A^{**} is injective.

This motivates the following definition :

▶ Definition : We say that $G \frown A$, with G discrete, is amenable, as a C^* -algebra action if the action $G \frown A^{**}$ is amenable in the von Neumann sense.

AMENABLE ACTIONS ON von NEUMANN ALGEBRAS, cont'd

WARNING!

 $\hookrightarrow G \curvearrowright \ell^{\infty}(G)$ is amenable when $\ell^{\infty}(G)$ is seen as a von Neumann algebra, but is amenable when $\ell^{\infty}(G)$ is seen as a C^* -algebra iff G is exact.

AMENABLE ACTIONS ON C*-ALGEBRAS, cont'd

Proposition (AD 1987) : Every amenable action $G \curvearrowright A$ has the WCP.

Recall :

 $\bigcirc G \curvearrowright A$, with G discrete, is **amenable** iff there exists a net $(\theta_i : G \to Z(A^{**}))_i$ of finitely supported positive type functions such that $\theta_i(e) \leq 1$ for each *i* and $\lim_{i\to\infty} \theta_i(g) = 1$ **ultraweakly** for each $g \in G$.

Buss-Echterhoff-Willett 2019 have introduced a stronger definition of amenable action :

▶ **Definition** : $G \cap A$, with G discrete, is **strongly amenable** if there exists a net $(\theta_i : G \to Z(M(A))_i$ of finitely supported positive type functions such that $\theta_i(e) \le 1$ for each i and $\lim_{i\to\infty} \theta_i(g) = 1$ **strictly** for each $g \in G$.

AMENABLE ACTIONS ON C*-ALGEBRAS, cont'd

Remark : Let $G \cap X$ and so $G \cap C_b(X)$. Given $\theta : G \to C_b(X)$, set $\tilde{\theta}(x,g) = \theta(g)(x)$. Then θ is positive type iff $\tilde{\theta}$ is positive type on the groupoid $X \rtimes G$, *i.e.* for any $g_1, \dots, g_n \in G$ and any $x \in X$ the matrix $[\tilde{\theta}(g_i^{-1}x, g_i^{-1}g_i)] \in M_n(\mathbb{C})$ is non-negative.

▶ **Definition** : The transformation groupoid $X \rtimes G$ is amenable if there exists a net $(\tilde{\theta}_i)_i$ of positive type functions on the groupoid $X \rtimes G$, with compact support and and $(\tilde{\theta}_i(e, \cdot) \leq 1$, which converges to 1 uniformly on compact subsets of $X \rtimes G$.

Proposition (AD 1987) : The groupoid $X \rtimes G$ is amenable iff $G \curvearrowright C_0(X)$ is strongly amenable, iff $G \curvearrowright C_0(X)$ is amenable.

AMENABLE ACTIONS ON C*-ALGEBRAS and the WCP

- Let $G \curvearrowright A$, with G discrete.
- ∼ → Recall :

strongly amenable action \Rightarrow amenable action \Rightarrow WCP.

Yuhei Suzuki (2018) has shown that every exact discrete group has an action with the WCP on a simple unital nuclear C^* -algebra. If *G* is exact but not amenable the action is not strongly amenable since $Z(M(A)) = Z(A) = \mathbb{C}$. \checkmark However, in this example, $A \rtimes_r G$ is nuclear, and therefore the

action is amenable.

Hence we have :

- \bullet amenable action $\not\Rightarrow$ strongly amenable action
- WCP \neq strongly amenable action.

AMENABLE ACTIONS ON C*-ALGEBRAS and the WCP, cont'd

Lemma : If $G \curvearrowright A$ is amenable there exists a ucp equivariant map $\Phi : \ell^{\infty}(G) \to Z(A^{**})$. The converse is true when G is **exact**.

Proof : If there exists an equivariant projection $\ell^{\infty}(G) \otimes Z(A^{**}) \to Z(A^{**})$ we consider its restriction to $\ell^{\infty}(G)$. Conversely assume that *G* is exact. Then $G \frown \ell^{\infty}(G)$ is amenable (**in the** C^* **sense**) and there exists a net $(\theta_i : G \to \ell^{\infty}(G))_i$ of finitely supported positive type functions such that $\theta_i(e) \leq 1$ for each *i* and $\lim_{i\to\infty} \theta_i(g) = 1$ in norm for each $g \in G$. Then, considering the net $(\Phi \circ \theta_i : G \to Z(A^{**}))_i$ show that $G \frown A$ is amenable.

Theorem (*Matsumura 2014*) : Let $G \curvearrowright X$ be an action of a discrete **exact** group. Then the WCP of the action (or of the groupoid $X \rtimes G$) implies the amenability of the action.

Proof : One constructs a representation $\pi : C_0(X) \rtimes_r G \to \mathcal{B}(H)$, extends it to a cp map $\mathcal{B}(\ell^2(G) \otimes H) \to \mathcal{B}(H)$ and take the restriction to $\ell^{\infty}(G) \otimes A$.

AMENABILITY vs WCP for GROUP BUNDLES

▶ A groupoid group bundle is a l.c. groupoid \mathcal{G} such that r = s and r is an *open* map from \mathcal{G} onto its space of units X. It can be seen as a field of groups $x \in X \mapsto G(x) = \{\gamma \in \mathcal{G} : r(\gamma) = x = s(\gamma)\}$ arranged in a continuous way.

 \sim $C^*(\mathcal{G})$ is a $C_0(X)$ -algebra with fibres $C^*(G(x))^1$: if $\Pi_x : C^*(\mathcal{G}) \to C^*(G(x))$ is the quotient map, the map $x \mapsto ||\Pi_x(a)||$ is **upper** semicontinuous for $a \in C^*(\mathcal{G})$.

if $\pi_x : C_r^*(\mathcal{G}) \to C_r^*(\mathcal{G}(x))$ is the quotient map, the map $x \mapsto ||\pi_x(a)||$ is **lower** semicontinuous for $a \in C_r^*(\mathcal{G})$.

1. $(\varphi f)(\gamma) = \varphi \circ r(\gamma)f(\gamma)$ for $\varphi \in C_0(X)$ and $f \in C_c(\mathcal{G})$

AMENABILITY vs WCP for GROUP BUNDLES, cont'd

Let \mathcal{G} be a groupoid group bundle over $X = \mathcal{G}^{(0)}$. For $x \in X$ let π_x be the canonical surjective map from $C_r^*(\mathcal{G})$ onto $C_r^*(\mathcal{G}(x))$. We set $U_x = X \setminus \{x\}$ and denote by $\mathcal{G}(U_x)$ the subgroupoid of those $\gamma \in \mathcal{G}$ such that $r(\gamma) \in U_x$.

Proposition : Let \mathcal{G} groupoid group bundle and let us consider the following conditions.

- (1) \mathcal{G} is amenable;
- (2) for every $a \in C_r^*(\mathcal{G})$ the function $x \mapsto ||\pi_x(a)||$ is continuous;
- (3) the sequence $0 \to C_r^*(\mathcal{G}(U_x)) \to C_r^*(\mathcal{G}) \to C_r^*(\mathcal{G}(x)) \to 0$ is exact for every $x \in X$.

Then we have $(1) \Rightarrow (2) \Leftrightarrow (3)$. Moreover these three conditions are equivalent when \mathcal{G} has the weak containment property.

AMENABILITY vs WCP for GROUP BUNDLES, cont'd

Assume that \mathcal{G} has the weak containment property. For every $x \in X$ the following diagram is commutative

The first line is exact and λ is an isomorphism. It follows that if the second line is exact, then λ_x is injective, *i.e.* G(x) is amenable for every $x \in X$, and therefore \mathcal{G} is amenable.

AMENABILITY vs WCP for GROUP BUNDLES, cont'd

We have :

 $\checkmark \quad \mathcal{G} \text{ is amenable} \Leftrightarrow \mathcal{G} \text{ has the WCP and for every } x \in X \text{ the sequence}$ $0 \to C_r^*(\mathcal{G}(U_x)) \to C_r^*(\mathcal{G}) \to C_r^*(\mathcal{G}(x)) \to 0$

is exact.

Problem : Does the WCP imply the exactness of this sequence for every $x \in X$?

HLS GROUPOIDS

Example : Higson-Lafforgue-Skandalis (HLS) groupoids

Let Γ be a finitely generated **residually finite** group and let $\Gamma \supset N_0 \supset N_1 \cdots \supset N_k \supset \cdots$ be a decreasing sequence of finite index normal subgroups with $\bigcap_k N_k = \{e\}$. We set $\Gamma_k = \Gamma/N_k$ and $\Gamma_{\infty} = \Gamma$ and denote by $\rho_k : \Gamma \rightarrow \Gamma_k$ the quotient map. Let $\widehat{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ be the Alexandroff compactification of \mathbb{N} . Let \mathcal{G} be the quotient of $\widehat{\mathbb{N}} \times \Gamma$ by the equivalence relation

 $(k,s) \sim (l,t)$ if k = l and $\rho_k(s) = \rho_k(t)$.

Equipped with the quotient topology, \mathcal{G} is an étale Hausdorff groupoid, a bundle of groups, whose fibre at k is $G(k) = \Gamma_k$.

→ HLS 2002 :

the sequence $0 \longrightarrow C_r^*(\mathcal{G}(\mathbb{N})) \longrightarrow C_r^*(\mathcal{G}) \longrightarrow C_r^*(\mathcal{G}(\infty)) \longrightarrow 0$ is not exact whenever Γ is infinite and has Kazdhan's property (T) (it is not even exact in *K*-theory!)

HLS GROUPOIDS, cont'd

Proposition (AD 2015) : The sequence

$$0 \longrightarrow C^*_r(\mathcal{G}(\mathbb{N})) \longrightarrow C^*_r(\mathcal{G}) \longrightarrow C^*_r(\mathcal{G}(\infty)) \longrightarrow 0$$

is exact iff the group Γ is amenable (thus iff the HLS groupoid G is amenable).

Willett 2015 : There exist HLS groupoids that have the WCP and are not amenable. He takes $\Gamma = \mathbb{F}_2$ and constructs a decreasing sequence $\mathbb{F}_2 \supset N_0 \supset N_1 \cdots \supset N_k \supset \cdots$ of finite index normal subgroups of \mathbb{F}_2 with $\bigcap_k N_k = \{e\}$ such the corresponding HLS groupoid has the weak containment property.

EXACT GROUPOIDS

Knowing *a priori* some exactness property of a groupoid seems useful in order to show that its weak containment property implies its amenability.

→ Questions

- ▶ What is the right definition of exactness for a groupoid?
- Would WCP, added with a good definition of exactness, implies amenability?

EXACT GROUPOIDS. For a l.c. group G there are three possible definitions of exactness :

- (1) amenability at infinity meaning the existence of an amenable action of G on a *compact* space X (i.e. the groupoid $X \rtimes G$ is amenable).
- (2) KW-exactness^a, i.e. for every G-equivariant exact sequence
 0 → I → A → B → 0 of G-C*-algebras, the corresponding sequence
 0 → I ⋊_r G → A ⋊_r G → B ⋊_r G → 0 of reduced crossed products is exact.
- (3) C^* -exactness, i.e. or every short exact sequence $0 \rightarrow J \rightarrow B \rightarrow B/J \rightarrow 0$ of C^* -algebras, the following sequence $0 \rightarrow C_r^*(G) \otimes J \rightarrow C_r^*(G) \otimes B \rightarrow C_r^*(G) \otimes (B/J) \rightarrow 0$ is exact, where \otimes denotes the minimal (or spatial) tensor product.

a. for Kirchberg-Wassermann

 $(1) \Rightarrow (2) \Rightarrow (3)$ is immediate. That $(2) \Rightarrow (1)$ is due to *Brodski-Cave-Li* (2017) in the non-discrete case. In the discrete case, these 3 conditions are equivalent (*Kirchberg-Wassermann* (1999), Ozawa (2000)).

WEAK INNER AMENABILITY

Definition : A locally compact group G is weakly inner amenable if there exists a state on $L^{\infty}(G)$ that is invariant under conjugacy.

Discrete groups and amenable groups are weakly inner amenable.

Proposition : *G* is weakly inner amenable iff the following property is satisfied :

for all compact subset $K \subset G$, $\forall \varepsilon > 0$ there exists a continuous bounded positive type, properly supported* function f on the group $G \times G$ such that $|f(t,t)-1| \leq \varepsilon$ for all $t \in K$.

If *G* is weakly inner amenable there exists a net (ξ_i) in $C_c(G)$ with $\|\xi_i\|_2 = 1$ and $\lim_i \langle \xi_i, \lambda_t \rho_t \xi_i \rangle = 1$ uniformly on compact subsets of *G*. Then set $f_i(s, t) = \langle \xi_i, \lambda_t \rho_s \xi_i \rangle$.

Converse proved by Crann-Tanko (JFA 2017)

* i.e. $(supp f) \cap (K \times G \cup G \times K)$ compact for every compact subset of G

WEAK INNER AMENABILITY, cont'd

Proposition (AD 2000) : Let G be a weakly inner amenable l.c. group. Then the 3 definitions of exactness are equivalent.

▶ **Definition :** A l.c. groupoid \mathcal{G} is **weakly inner amenable** if for every compact subset K of \mathcal{G} and every $\varepsilon > 0$ there exists a continuous bounded positive type, properly supported function f on the groupoid product $\mathcal{G} \times \mathcal{G}$ such that $|f(\gamma, \gamma) - 1| \leq \varepsilon$ for all $\gamma \in K$.

▶ **Definition :** A l.c. groupoid \mathcal{G} is **amenable at infinity** if it has an amenable action on a fibre l.c. space (Y, p) over $\mathcal{G}^{(0)}$ such that $p: Y \to \mathcal{G}^{(0)}$ is proper.

EXACT GROUPOIDS

For an étale groupoid we have the same results.

Proposition (AD 2000, 2016) : Let \mathcal{G} be an étale groupoid that is weakly inner amenable. TFEA :

- (1) \mathcal{G} is amenable at infinity;
- (2) *G* is KW-exact;
- (3) \mathcal{G} is C^* -exact.

Question : Is every étale groupoid weakly inner amenable ?

EXACT GROUPOIDS

▶ **Definition** : A l.c. groupoid \mathcal{G} is **inner exact** if for every invariant open subset U of $X = \mathcal{G}^{(0)}$ (*i.e.*, $r(\gamma) \in U \Leftrightarrow s(\gamma) \in U$) the sequence

 $0 \to C^*_r(\mathcal{G}(U) \to C^*_r(\mathcal{G}) \to C^*_r(\mathcal{G}(X \setminus U) \to 0)$

is exact ($\mathcal{G}(U) = r^{-1}(U)$ and $\mathcal{G}(X \setminus U) = r^{-1}(X \setminus U)$).

Examples : Locally compact groups, minimal l.c. groupoids (*i.e.* without non-trivial invariant open subsets, KW-exact l.c. groupoids are inner amenable.

Problem : Let \mathcal{G} be an inner exact groupoid. Is is true that if \mathcal{G} has the WCP then \mathcal{G} is amenable. Answer is yes for l.c. groups (*Hulanicki*), for transitive l.c. groupoids (*Buneci 2001*), groupoid group bundles and more generally for l.c. groupoids \mathcal{G} such that the orbit space $\mathcal{G}^{(0)}/\mathcal{G}$ is T_0 (*Bönicke*, 18/09/2019).

OPEN QUESTIONS

← For a l.c. groupoid :

 $WCP + (inner) \text{ exactness } \Rightarrow \text{ amenability}?$

 \frown For an action $G \curvearrowright A$

WCP + G exact \Rightarrow amenability?

Roe-Willett 2014 : If *G* is discrete and $G \sim \partial G$ has the WCP then *G* is exact and so the action is amenable.