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Preliminaries

Definition

A tracial von Neumann algebra (N, τ) is a von Neumann algebra N
together with a normal faithful tracial state τ on N.

Definition

Let (N, τ) and (M, σ) be two tracial von Neumann algebras. A
unital ∗-homomorphism π : N → M is an embedding if it is
injective and σ ◦ π = τ .
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Preliminaries

Definition

A tracial von Neumann algebra (N, τ) is hyperfinite if it is the
σ-weak closure of an increasing union of finite-dimensional
subalgebras. Let R denote the separably acting hyperfinite
II1-factor. This is equivalent to amenable, injective, and
semidiscrete.

Proposition

If (N, τ) is a separable amenable tracial von Neumann algebra, let
{Mk} be a sequence of II1-factors, and let U denote a free
ultrafilter on N, then any two embeddings π, ρ : N →

∏
k→U Mk

are unitarily conjugate.

Definition

A tracial von Neumann algebra (N, τ) satisfies the Connes
Embedding Problem (CEP) if there is an embedding π : N → RU .
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Jung’s characterization

Theorem (Jung, ’07)

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP.
Then N is amenable if and only if any two embeddings
π, ρ : N → RU are unitarily conjugate.
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Sketch of Jung’s argument

Definition

Let X = {x1, . . . , xn} ⊂ (N)s.a.1 . The n-tuple X is tubular if for
every ε > 0 there is a δ > 0 and m ∈ N such that for any J ∈ N
and ξ, η ∈ Γ(X ;m, J, δ) there is a unitary u ∈ U(MJ) such that

||ξ − u∗ηu||2 < ε.

Lemma

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP
with N = W ∗(X ). If any two embeddings π, ρ : N → RU are
unitarily conjugate, then X is (quasi-)tubular.
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Sketch of Jung’s argument

Lemma

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP
with N = W ∗(X ). If X is (quasi-)tubular, then for any ε > 0 there
is an embedding π : N → RU and a finite dimensional subalgebra
A ⊂ RU such that π(X ) ⊂ε,||·||2 A.

Proposition
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π : N → RU and a finite dimensional subalgebra A ⊂ RU such that
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ucp conjugation

Definition

Let (N, τ) be a separable tracial von Neumann algebra satisfying
CEP. Two embeddings π, ρ : N → RU are ucp-conjugate if there is
a sequence of ucp maps ϕk : R → R such that π = (ϕk)U ◦ ρ.
That is, for every x ∈ N, if ρ(x) = (ak)U then π(x) = (ϕk(ak))U .

Theorem (A.-Kunnawalkam Elayavalli, ’19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying
CEP. Then N is amenable if and only if any two embeddings
π, ρ : N → RU are ucp-conjugate.
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Definition

The n-tuple X ⊂ (N)s.a.1 is completely tubular if for every ε > 0
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Sketch of argument

Lemma

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP
with N = W ∗(X ). If X is completely tubular, then for any ε > 0
and any finite subset F ⊂ (N)1 there is a J ∈ N and a ucp map
ϕ : MJ → N such that F ⊂ε,||·||2 ϕ((MJ)1).

Proposition (Kishimoto, unpublished)

Let (N, τ) be a separable tracial von Neumann algebra. Then N is
injective if and only if for any ε > 0 and any finite subset
F ⊂ (N)1 there is a J ∈ N and a ucp map ϕ : MJ → N such that
F ⊂ε,||·||2 ϕ((MJ)1).
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Consequences

Corollary (A.-Kunnawalkam Elayavalli, ’19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying
the CEP, and for each k ∈ N let Mk be a II1-factor. Then N is
amenable if and only if any two embeddings π, ρ : N →

∏
k→U Mk

are (unitarily /ucp-)conjugate.
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Ozawa’s improvement

Let Hom(N,M) denote the space of all unital ∗-homomorphisms
of N into M modulo unitary equivalence. Endow Hom(N,M) with
the natural topology of point-|| · ||2 convergence of representatives.
Jung showed that N is amenable if and only if |Hom(N,RU )| = 1.

Theorem (Ozawa ’11)

Let (N, τ) be a separable tracial von Neumann algebra satisfying
CEP. Then N is amenable if and only if Hom(N,RU ) is separable.
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Popa’s question

Let {Mk} be a sequence of II1-factors. The above consequence
says that N is amenable if and only if |Hom(N,

∏
k→U Mk)| = 1.

In 2014, Popa asked if a statement similar to Ozawa’s
improvement holds for Hom(N,

∏
k→U Mk).

Theorem (A.-Kunnawalkam Elayavalli, ’19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying
CEP. Then N is amenable if and only if Hom(N,

∏
k→U Mk) is

separable.
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Tracial stability

Definition

Let C denote a class of C ∗-algebras. A C ∗-algebra A is C -tracially
stable if for every unital ∗-homomorphism π : A →

∏
k→U (Ak , τk)

with Ak ∈ C there is a sequence of unital ∗-homomorphisms
πk : A → Ak such that π(a) = (πk(a))U for every a ∈ A.

Example

R is II1-tracially stable. In fact, R is the only II1-tracially stable
II1-factor.

Scott Atkinson Ultraproduct embeddings and amenability



Tracial stability

Definition

Let C denote a class of C ∗-algebras. A C ∗-algebra A is C -tracially
stable if for every unital ∗-homomorphism π : A →

∏
k→U (Ak , τk)

with Ak ∈ C there is a sequence of unital ∗-homomorphisms
πk : A → Ak such that π(a) = (πk(a))U for every a ∈ A.

Example

R is II1-tracially stable. In fact, R is the only II1-tracially stable
II1-factor.

Scott Atkinson Ultraproduct embeddings and amenability



Self-tracial stability

Definition

A tracial von Neumann algebra (N, τ) is self-tracially stability if N
is {N}-tracially stable.

Theorem (A.-Kunnawalkam Elayavalli, ’19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying
the CEP. Then N is amenable if and only if N is self-tracially
stable.

Corollary (A.-Kunnawalkam Elayavalli, ’19)

If (N, τ) is self-tracially stable and non-amenable, then N does not
satisfy the CEP.
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THANKS!
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