Playing games with II₁ factors

Isaac Goldbring

University of California, Irvine

Classification Problems in von Neumann Algebras Banff International Research Station October 3, 2019

2 Ehrenfeucht-Fraïsse Games

Isaac Goldbring (UCI)

< ロ > < 同 > < 回 > < 回 >

Introducing the game

- We fix a countably infinite set C of distinct symbols (*witnesses*) that are to represent generators of a separable tracial vNa that two players (traditionally named ∀ and ∃) are going to build together (albeit adversarially).
- The two players take turns playing finite sets of expressions of the form |||p(c)||₂ r| < ǫ, where c is a tuple of variables, p(c) is a *-polynomial, and each player's move is required to extend the previous player's move. These sets are called (open) *conditions*.
- Moreover, these conditions are required to be *satisfiable*, meaning that there should be some vNa *A* and some tuple *a* from *A* such that $|||p(a)||_2 r| < \epsilon$ for each such expression in the condition.

・ロン ・四 ・ ・ ヨン ・ ヨン

Introducing the game

- We fix a countably infinite set *C* of distinct symbols (*witnesses*) that are to represent generators of a separable tracial vNa that two players (traditionally named ∀ and ∃) are going to build together (albeit adversarially).
- The two players take turns playing finite sets of expressions of the form |||p(c)||₂ r| < ϵ, where c is a tuple of variables, p(c) is a *-polynomial, and each player's move is required to extend the previous player's move. These sets are called (open) *conditions*.
- Moreover, these conditions are required to be *satisfiable*, meaning that there should be some vNa *A* and some tuple *a* from *A* such that $|||p(a)||_2 r| < \epsilon$ for each such expression in the condition.

Introducing the game

- We fix a countably infinite set *C* of distinct symbols (*witnesses*) that are to represent generators of a separable tracial vNa that two players (traditionally named ∀ and ∃) are going to build together (albeit adversarially).
- The two players take turns playing finite sets of expressions of the form |||p(c)||₂ r| < ϵ, where c is a tuple of variables, p(c) is a *-polynomial, and each player's move is required to extend the previous player's move. These sets are called (open) *conditions*.
- Moreover, these conditions are required to be *satisfiable*, meaning that there should be some vNa A and some tuple a from A such that |||p(a)||₂ r| < ϵ for each such expression in the condition.</p>

Introducing the game (cont'd)

• We play this game for ω many steps.

- At the end of this game, we have enumerated some countable, satisfiable set of expressions.
- Provided that the players behave, they can ensure that the play is *definitive*, meaning that the final set of expressions yields complete information about all *-polynomials over the variables *C* (that is, for each *-polynomial p(c), there should be a unique *r* such that the play of the game implies that ||p(c)|| = r) and that this data describes a countable, dense *-subalgebra of a unique vNa, which is often called the *compiled structure*.

Introducing the game (cont'd)

- We play this game for ω many steps.
- At the end of this game, we have enumerated some countable, satisfiable set of expressions.
- Provided that the players behave, they can ensure that the play is *definitive*, meaning that the final set of expressions yields complete information about all *-polynomials over the variables *C* (that is, for each *-polynomial p(c), there should be a unique *r* such that the play of the game implies that ||p(c)|| = r) and that this data describes a countable, dense *-subalgebra of a unique vNa, which is often called the *compiled structure*.

Introducing the game (cont'd)

- We play this game for ω many steps.
- At the end of this game, we have enumerated some countable, satisfiable set of expressions.
- Provided that the players behave, they can ensure that the play is *definitive*, meaning that the final set of expressions yields complete information about all *-polynomials over the variables *C* (that is, for each *-polynomial *p*(*c*), there should be a unique *r* such that the play of the game implies that ||*p*(*c*)|| = *r*) and that this data describes a countable, dense *-subalgebra of a unique vNa, which is often called the *compiled structure*.

< ロ > < 同 > < 回 > < 回 >

Definition

Given a property *P* of vNas, we say that *P* is an **enforceable** property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $(P_i : i \in \omega)$ are all enforceable properties, so is $\bigwedge_i P_i$.

It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise

Being a locally universal II₁ factor is enforceable.

Definition

Given a property *P* of vNas, we say that *P* is an **enforceable** property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $(P_i : i \in \omega)$ are all enforceable properties, so is $\bigwedge_i P_i$.

It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise

Being a locally universal II₁ factor is enforceable.

Definition

Given a property *P* of vNas, we say that *P* is an **enforceable** property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $(P_i : i \in \omega)$ are all enforceable properties, so is $\bigwedge_i P_i$.

It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise

Being a locally universal II₁ factor is enforceable.

Definition

Given a property *P* of vNas, we say that *P* is an **enforceable** property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $(P_i : i \in \omega)$ are all enforceable properties, so is $\bigwedge_i P_i$.

It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise

Being a locally universal II₁ factor is enforceable.

Example

It is enforceable that the compiled vNa is a McDuff $\rm II_1$ factor.

- We use the fact that a separable II₁ factor *A* is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_2(\mathbb{C})$ in *A* that almost commutes with *F*.
- Here's the strategy: suppose that \forall played the open condition *p* that only mentions witnesses amongst $C_0 \subseteq C$ (finite).
- ∃ can respond by taking $(c_{ij}) \in C \setminus C_0$ and saying that (c_{ij}) are matrix units that almost commute with C_0 .
- This is indeed a condition: if *p* were satisfied in *A*, then this new set of expressions is satisfiable in $A \otimes M_2(\mathbb{C})$.

Example

It is enforceable that the compiled vNa is a McDuff $\rm II_1$ factor.

- We use the fact that a separable II₁ factor *A* is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_2(\mathbb{C})$ in *A* that almost commutes with *F*.
- Here's the strategy: suppose that \forall played the open condition *p* that only mentions witnesses amongst $C_0 \subseteq C$ (finite).
- ∃ can respond by taking $(c_{ij}) \in C \setminus C_0$ and saying that (c_{ij}) are matrix units that almost commute with C_0 .
- This is indeed a condition: if *p* were satisfied in *A*, then this new set of expressions is satisfiable in $A \otimes M_2(\mathbb{C})$.

Example

It is enforceable that the compiled vNa is a McDuff $\rm II_1$ factor.

- We use the fact that a separable II₁ factor *A* is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_2(\mathbb{C})$ in *A* that almost commutes with *F*.
- Here's the strategy: suppose that ∀ played the open condition p that only mentions witnesses amongst C₀ ⊆ C (finite).
- ∃ can respond by taking $(c_{ij}) \in C \setminus C_0$ and saying that (c_{ij}) are matrix units that almost commute with C_0 .
- This is indeed a condition: if *p* were satisfied in *A*, then this new set of expressions is satisfiable in $A \otimes M_2(\mathbb{C})$.

Example

It is enforceable that the compiled vNa is a McDuff $\rm II_1$ factor.

- We use the fact that a separable II₁ factor *A* is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_2(\mathbb{C})$ in *A* that almost commutes with *F*.
- Here's the strategy: suppose that ∀ played the open condition p that only mentions witnesses amongst C₀ ⊆ C (finite).
- ∃ can respond by taking $(c_{ij}) \in C \setminus C_0$ and saying that (c_{ij}) are matrix units that almost commute with C_0 .
- This is indeed a condition: if *p* were satisfied in *A*, then this new set of expressions is satisfiable in $A \otimes M_2(\mathbb{C})$.

Example

It is enforceable that the compiled vNa is a McDuff $\rm II_1$ factor.

- We use the fact that a separable II₁ factor *A* is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_2(\mathbb{C})$ in *A* that almost commutes with *F*.
- Here's the strategy: suppose that ∀ played the open condition p that only mentions witnesses amongst C₀ ⊆ C (finite).
- ∃ can respond by taking $(c_{ij}) \in C \setminus C_0$ and saying that (c_{ij}) are matrix units that almost commute with C_0 .
- This is indeed a condition: if *p* were satisfied in *A*, then this new set of expressions is satisfiable in $A \otimes M_2(\mathbb{C})$.

Definition

A vNa *A* is **enforceable** if the property of being isomorphic to *A* is enforceable.

- By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II₁ factor.
- We let \mathcal{E} denote the enforceable II₁ factor, *should it exist*.
- If it exists, \mathcal{E} is a *canonical* locally universal II₁ factor.

イロト イポト イラト イラ

Definition

A vNa A is **enforceable** if the property of being isomorphic to A is enforceable.

- By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II₁ factor.
- We let \mathcal{E} denote the enforceable II₁ factor, *should it exist*.
- If it exists, \mathcal{E} is a *canonical* locally universal II₁ factor.

Definition

A vNa A is **enforceable** if the property of being isomorphic to A is enforceable.

- By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II₁ factor.
- We let \mathcal{E} denote the enforceable II₁ factor, *should it exist*.
- If it exists, \mathcal{E} is a *canonical* locally universal II₁ factor.

Definition

A vNa A is **enforceable** if the property of being isomorphic to A is enforceable.

- By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II₁ factor.
- We let \mathcal{E} denote the enforceable II₁ factor, *should it exist*.
- If it exists, \mathcal{E} is a *canonical* locally universal II₁ factor.

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic *p*, the algebraic closure of the prime field is the enforceable structure.

Example

There is an enforceable Banach space, the *Gurarij Banach space*.

Non-example

There is no enforceable group. (Highly nontrivial!)

Isaac Goldbring (UCI)

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example

There is an enforceable Banach space, the *Gurarij Banach space*.

Non-example

There is no enforceable group. (Highly nontrivial!)

Isaac Goldbring (UCI)

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example

There is an enforceable Banach space, the *Gurarij Banach space*.

Non-example

There is no enforceable group. (Highly nontrivial!)

3

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example

There is an enforceable Banach space, the *Gurarij Banach space*.

Non-example

There is no enforceable group. (Highly nontrivial!)

Isaac Goldbring (UCI)

э

< 日 > < 同 > < 回 > < 回 > < □ > <

CEP and enforceable models

Theorem

The following are equivalent:

- 1 CEP has a positive solution.
- 2 Hyperfiniteness is an enforceable property.
- **3** \mathcal{R} is the enforceable II₁ factor.
- 4 $\mathcal{R}^{\mathcal{U}}$ -embeddability is enforceable.

∃ ► < ∃ ►</p>

A D M A A A M M

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or
- Chaos: for every enforceable property P of vNas, there are 2^{ℵ₀} many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

If not, then *E* rivals *R* as the most canonical separable II₁ factor (and CEP is false).

- *E* embeds into all e.c. II₁ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or
- Chaos: for every enforceable property P of vNas, there are 2^{ℵ₀} many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

If not, then *E* rivals *R* as the most canonical separable II₁ factor (and CEP is false).

- *E* embeds into all e.c. II₁ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or
- Chaos: for every enforceable property P of vNas, there are 2^{ℵ₀} many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

If not, then *E* rivals *R* as the most canonical separable II₁ factor (and CEP is false).

- \blacksquare \mathcal{E} embeds into all e.c. II₁ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or
- Chaos: for every enforceable property P of vNas, there are 2^{ℵ₀} many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

If not, then *E* rivals *R* as the most canonical separable II₁ factor (and CEP is false).

- *E* embeds into all e.c. II₁ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or
- Chaos: for every enforceable property P of vNas, there are 2^{ℵ₀} many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

If not, then *E* rivals *R* as the most canonical separable II₁ factor (and CEP is false).

- **\mathbb{E}** embeds into all e.c. II₁ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or
- Chaos: for every enforceable property P of vNas, there are 2^{ℵ₀} many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

If not, then *E* rivals *R* as the most canonical separable II₁ factor (and CEP is false).

- **\mathcal{E}** embeds into all **e.c.** II₁ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Definition

A vNa *A* is a **tensor square** or **has a tensor square root** if there is a vNa *B* such that $A \cong B \overline{\otimes} B$.

Clearly \mathcal{R} is a tensor square.

Theorem (G.; G.-Sinclair; Connes)

CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

Definition

A vNa *A* is a **tensor square** or **has a tensor square root** if there is a vNa *B* such that $A \cong B \overline{\otimes} B$.

Clearly \mathcal{R} is a tensor square.

Theorem (G.; G.-Sinclair; Connes)

CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

Definition

A vNa *A* is a **tensor square** or **has a tensor square root** if there is a vNa *B* such that $A \cong B \overline{\otimes} B$.

Clearly \mathcal{R} is a tensor square.

Theorem (G.; G.-Sinclair; Connes)

CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

Definition

A vNa *A* is a **tensor square** or **has a tensor square root** if there is a vNa *B* such that $A \cong B \overline{\otimes} B$.

Clearly \mathcal{R} is a tensor square.

Theorem (G.; G.-Sinclair; Connes)

CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

イロン イ理 とく ヨン イヨン
1 Robinsonian Games

2 Ehrenfeucht-Fraïsse Games

3 One more game

Evil Definition

II₁ factors *M* and *N* are **elementary equivalent**, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

- (Farah-Hart-Sherman) Given any separable M, there are 2^{\aleph_0} many pairwise nonisomorphic separable N such that $M \equiv N$.
- 2 (Farah-Hart-Sherman) If *M* has Γ (resp. is McDuff) and *N* does not have Γ (resp. is not McDuff), then $M \neq N$.
- 3 (Boutonnet-Chifan-Ioana) There are separable M_{α} ($\alpha \in 2^{\omega}$) such that $M_{\alpha} \neq M_{\beta}$ for $\alpha \neq \beta$.

Evil Definition

II₁ factors *M* and *N* are **elementary equivalent**, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

- 1 (Farah-Hart-Sherman) Given any separable M, there are 2^{\aleph_0} many pairwise nonisomorphic separable N such that $M \equiv N$.
- 2 (Farah-Hart-Sherman) If *M* has Γ (resp. is McDuff) and *N* does not have Γ (resp. is not McDuff), then $M \neq N$.
- 3 (Boutonnet-Chifan-Ioana) There are separable M_α (α ∈ 2^ω) such that M_α ≠ M_β for α ≠ β.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evil Definition

II₁ factors *M* and *N* are **elementary equivalent**, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

- 1 (Farah-Hart-Sherman) Given any separable M, there are 2^{\aleph_0} many pairwise nonisomorphic separable N such that $M \equiv N$.
- 2 (Farah-Hart-Sherman) If *M* has Γ (resp. is McDuff) and *N* does not have Γ (resp. is not McDuff), then $M \neq N$.
- 3 (Boutonnet-Chifan-Ioana) There are separable M_{α} ($\alpha \in 2^{\omega}$) such that $M_{\alpha} \neq M_{\beta}$ for $\alpha \neq \beta$.

3

Evil Definition

II₁ factors *M* and *N* are **elementary equivalent**, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

- 1 (Farah-Hart-Sherman) Given any separable M, there are 2^{\aleph_0} many pairwise nonisomorphic separable N such that $M \equiv N$.
- 2 (Farah-Hart-Sherman) If *M* has Γ (resp. is McDuff) and *N* does not have Γ (resp. is not McDuff), then $M \neq N$.
- 3 (Boutonnet-Chifan-Ioana) There are separable M_{α} ($\alpha \in 2^{\omega}$) such that $M_{\alpha} \neq M_{\beta}$ for $\alpha \neq \beta$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First-order Dye's Theorem

Observation

 $M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Proof.

The following are equivalent:

- 1 $M \equiv N$
- $(\exists \mathcal{U})M^{\mathcal{U}} \cong N^{\mathcal{U}}$
- $(\exists \mathcal{U}) U(M^{\mathcal{U}}) \cong U(N^{\mathcal{U}})$
- 4 $(\exists \mathcal{U}) U(M)^{\mathcal{U}} \cong U(N)^{\mathcal{U}}$
- 5 $U(M) \equiv U(N)$.

The equivalence of (2) and (3) is by Dye's Theorem

First-order Dye's Theorem

Observation

 $M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Proof.

The following are equivalent:

- 1 $M \equiv N$
- $(\exists \mathcal{U})M^{\mathcal{U}} \cong N^{\mathcal{U}}$
- $(\exists \mathcal{U}) U(M^{\mathcal{U}}) \cong U(N^{\mathcal{U}})$
- $(\exists \mathcal{U}) U(M)^{\mathcal{U}} \cong U(N)^{\mathcal{U}}$
- $U(M) \equiv U(N).$

The equivalence of (2) and (3) is by Dye's Theorem.

ヘロト 人間 とくほとくほとう

The class \mathcal{K}_{op}

Definition

We let \mathcal{K}_{op} denote the class of *M* such that $M \equiv M^{op}$.

Remark

 \mathcal{K}_{op} is an axiomatizable class.

Question

Does every II₁ factor belong to \mathcal{K}_{op} ?

イロト イヨト イヨト イヨト

The class \mathcal{K}_{op}

Definition

We let \mathcal{K}_{op} denote the class of M such that $M \equiv M^{op}$.

Remark

 \mathcal{K}_{op} is an axiomatizable class.

Question

Does every II₁ factor belong to \mathcal{K}_{op} ?

イロト イヨト イヨト イヨト

The class \mathcal{K}_{op}

Definition

We let \mathcal{K}_{op} denote the class of M such that $M \equiv M^{op}$.

Remark

 \mathcal{K}_{op} is an axiomatizable class.

Question

Does every II₁ factor belong to \mathcal{K}_{op} ?

3

Observation

 $M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{op}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

- A Z₄-metric space is a metric space together with an action of Z₄ by isometries.
- We consider *U*(*M*) as a Z₄-metric space by letting the generator act by multiplication by *i*.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

Observation

 $M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{op}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

- A Z₄-metric space is a metric space together with an action of Z₄ by isometries.
- We consider U(M) as a Z₄-metric space by letting the generator act by multiplication by *i*.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

(m) > < = > < =</p>

Observation

 $M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{op}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

- A Z₄-metric space is a metric space together with an action of Z₄ by isometries.
- We consider *U*(*M*) as a Z₄-metric space by letting the generator act by multiplication by *i*.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

Observation

 $M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{op}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

- A Z₄-metric space is a metric space together with an action of Z₄ by isometries.
- We consider *U*(*M*) as a Z₄-metric space by letting the generator act by multiplication by *i*.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

Banach pairs

Definition

A **Banach pair** is a pair (*X*, *C*), where *X* is a normed space and $C \subseteq (X)_1$ are such that:

C is complete;

for all $x, y \in C$ and $\lambda, \mu \in \mathbb{C}$ with $|\lambda| + |\mu| \le 1$, we have $\lambda x + \mu y \in C$;

$$X = \bigcup_n n \cdot \mathcal{C}.$$

Main example

If *M* is a II_1 factor, then $(M, (M)_1)$ is a Banach pair, where *M* is considered a normed space in the 2-norm.

Banach pairs

Definition

A **Banach pair** is a pair (*X*, *C*), where *X* is a normed space and $C \subseteq (X)_1$ are such that:

- C is complete;
- for all $x, y \in C$ and $\lambda, \mu \in \mathbb{C}$ with $|\lambda| + |\mu| \le 1$, we have $\lambda x + \mu y \in C$;

$$X = \bigcup_n n \cdot \mathcal{C}.$$

Main example

If *M* is a II_1 factor, then $(M, (M)_1)$ is a Banach pair, where *M* is considered a normed space in the 2-norm.

Given $n \in \mathbb{N}$, $\epsilon > 0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

- Player I chooses a one-dimensional subspace, either $E_1 \subset X$ or $F_1 \subset Y$. Player II then chooses a subspace, respectively $F_1 \subset Y$ or $E_1 \subset X$, and a linear bijection $T_1 : E_1 \to F_1$.
- At round *i*, Player I chooses an at most one-dimensional extension, either $E_i \supset E_{i-1}$ or $F_i \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_i \subset Y$ or $E_i \subset X$, and a linear bijection $T_i : E_i \rightarrow F_i$ which extends T_{i-1} .
- The players make their choices for *n* rounds. Player II wins if $T_n: E_n \to F_n$ is an ϵ -almost isometry; otherwise, Player I wins.

Proposition

 $(X, C) \equiv (Y, D)$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all *n* and ϵ .

Given $n \in \mathbb{N}$, $\epsilon > 0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

- Player I chooses a one-dimensional subspace, either $E_1 \subset X$ or $F_1 \subset Y$. Player II then chooses a subspace, respectively $F_1 \subset Y$ or $E_1 \subset X$, and a linear bijection $T_1 : E_1 \to F_1$.
- At round *i*, Player I chooses an at most one-dimensional extension, either $E_i \supset E_{i-1}$ or $F_i \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_i \subset Y$ or $E_i \subset X$, and a linear bijection $T_i : E_i \rightarrow F_i$ which extends T_{i-1} .
- The players make their choices for *n* rounds. Player II wins if $T_n: E_n \rightarrow F_n$ is an ϵ -almost isometry; otherwise, Player I wins.

Proposition

 $(X, C) \equiv (Y, D)$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all *n* and ϵ .

Isaac Goldbring (UCI)

Given $n \in \mathbb{N}$, $\epsilon > 0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

- Player I chooses a one-dimensional subspace, either E₁ ⊂ X or F₁ ⊂ Y. Player II then chooses a subspace, respectively F₁ ⊂ Y or E₁ ⊂ X, and a linear bijection T₁ : E₁ → F₁.
- At round *i*, Player I chooses an at most one-dimensional extension, either *E_i* ⊃ *E_{i-1}* or *F_i* ⊃ *F_{i-1}*. Player II then chooses a subspace, respectively *F_i* ⊂ *Y* or *E_i* ⊂ *X*, and a linear bijection *T_i* : *E_i* → *F_i* which extends *T_{i-1}*.
- The players make their choices for *n* rounds. Player II wins if $T_n: E_n \rightarrow F_n$ is an ϵ -almost isometry; otherwise, Player I wins.

Proposition

 $(X, C) \equiv (Y, D)$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all *n* and ϵ .

Isaac Goldbring (UCI)

• U > • OF > • E > • E > · ·

Given $n \in \mathbb{N}$, $\epsilon > 0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

- Player I chooses a one-dimensional subspace, either E₁ ⊂ X or F₁ ⊂ Y. Player II then chooses a subspace, respectively F₁ ⊂ Y or E₁ ⊂ X, and a linear bijection T₁ : E₁ → F₁.
- At round *i*, Player I chooses an at most one-dimensional extension, either *E_i* ⊃ *E_{i-1}* or *F_i* ⊃ *F_{i-1}*. Player II then chooses a subspace, respectively *F_i* ⊂ *Y* or *E_i* ⊂ *X*, and a linear bijection *T_i* : *E_i* → *F_i* which extends *T_{i-1}*.
- The players make their choices for *n* rounds. Player II wins if $T_n: E_n \rightarrow F_n$ is an ϵ -almost isometry; otherwise, Player I wins.

Proposition

 $(X, C) \equiv (Y, D)$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all *n* and ϵ .

• U > • OF > • E > • E > · ·

Given $n \in \mathbb{N}$, $\epsilon > 0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

- Player I chooses a one-dimensional subspace, either E₁ ⊂ X or F₁ ⊂ Y. Player II then chooses a subspace, respectively F₁ ⊂ Y or E₁ ⊂ X, and a linear bijection T₁ : E₁ → F₁.
- At round *i*, Player I chooses an at most one-dimensional extension, either *E_i* ⊃ *E_{i-1}* or *F_i* ⊃ *F_{i-1}*. Player II then chooses a subspace, respectively *F_i* ⊂ *Y* or *E_i* ⊂ *X*, and a linear bijection *T_i* : *E_i* → *F_i* which extends *T_{i-1}*.
- The players make their choices for *n* rounds. Player II wins if $T_n: E_n \rightarrow F_n$ is an ϵ -almost isometry; otherwise, Player I wins.

Proposition

 $(X, C) \equiv (Y, D)$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all *n* and ϵ .

First reduction

Fact (Kirchberg)

If *M* and *N* are II₁ factors and there is an isometry $T : L^2(M) \to L^2(N)$ that maps *M* onto *N* contractively, then either $M \cong N$ or $M \cong N^{\text{op}}$.

Definition

We say that *M* and *N* are **locally equivalent**, denoted $M \equiv_{loc} N$, if $(M, (M)_1) \equiv (N, (N)_1)$ as Banach pairs.

Corollary

 $M \equiv_{\text{loc}} N$ if and only if $M \equiv N$ or $M \equiv N^{\text{op}}$. In particular, if $M, N \in \mathcal{K}_{\text{op}}$, then $M \equiv_{\text{loc}} N$ if and only if $M \equiv N$.

First reduction

Fact (Kirchberg)

If *M* and *N* are II₁ factors and there is an isometry $T : L^2(M) \to L^2(N)$ that maps *M* onto *N* contractively, then either $M \cong N$ or $M \cong N^{\text{op}}$.

Definition

We say that *M* and *N* are **locally equivalent**, denoted $M \equiv_{loc} N$, if $(M, (M)_1) \equiv (N, (N)_1)$ as Banach pairs.

Corollary

 $M \equiv_{loc} N$ if and only if $M \equiv N$ or $M \equiv N^{op}$. In particular, if $M, N \in \mathcal{K}_{op}$, then $M \equiv_{loc} N$ if and only if $M \equiv N$.

First reduction

Fact (Kirchberg)

If *M* and *N* are II₁ factors and there is an isometry $T : L^2(M) \to L^2(N)$ that maps *M* onto *N* contractively, then either $M \cong N$ or $M \cong N^{\text{op}}$.

Definition

We say that *M* and *N* are **locally equivalent**, denoted $M \equiv_{loc} N$, if $(M, (M)_1) \equiv (N, (N)_1)$ as Banach pairs.

Corollary

 $M \equiv_{loc} N$ if and only if $M \equiv N$ or $M \equiv N^{op}$. In particular, if $M, N \in \mathcal{K}_{op}$, then $M \equiv_{loc} N$ if and only if $M \equiv N$.

3

We define the game $\mathcal{G}_{vN}(n, \epsilon)$ played by two players with II₁-factors *M* and *N* as follows:

- At stage *i*, Player I chooses a unitary either $u_i \in U(M)$ or $v_i \in U(N)$. Player II then chooses a unitary, respectively $v_i \in U(N)$ or $u_i \in U(M)$ in the same manner.
- The players make their choices for *n* rounds. Player II wins if $|\langle u_i, u_j \rangle \langle v_i, v_j \rangle| < \epsilon$ for all $1 \le i, j \le n$; otherwise, Player I wins.

Theorem

 $M \equiv_{loc} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{vN}(n,\epsilon)$ for all n and ϵ .

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

イロト イヨト イヨト イヨト

We define the game $\mathcal{G}_{vN}(n, \epsilon)$ played by two players with II₁-factors *M* and *N* as follows:

At stage *i*, Player I chooses a unitary either $u_i \in U(M)$ or $v_i \in U(N)$. Player II then chooses a unitary, respectively $v_i \in U(N)$ or $u_i \in U(M)$ in the same manner.

The players make their choices for *n* rounds. Player II wins if $|\langle u_i, u_j \rangle - \langle v_i, v_j \rangle| < \epsilon$ for all $1 \le i, j \le n$; otherwise, Player I wins.

Theorem

 $M \equiv_{loc} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{vN}(n, \epsilon)$ for all n and ϵ .

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

We define the game $\mathcal{G}_{vN}(n, \epsilon)$ played by two players with II₁-factors *M* and *N* as follows:

- At stage *i*, Player I chooses a unitary either $u_i \in U(M)$ or $v_i \in U(N)$. Player II then chooses a unitary, respectively $v_i \in U(N)$ or $u_i \in U(M)$ in the same manner.
- The players make their choices for *n* rounds. Player II wins if $|\langle u_i, u_j \rangle \langle v_i, v_j \rangle| < \epsilon$ for all $1 \le i, j \le n$; otherwise, Player I wins.

Theorem

 $M \equiv_{loc} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{vN}(n, \epsilon)$ for all n and ϵ .

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

We define the game $\mathcal{G}_{vN}(n, \epsilon)$ played by two players with II₁-factors *M* and *N* as follows:

- At stage *i*, Player I chooses a unitary either $u_i \in U(M)$ or $v_i \in U(N)$. Player II then chooses a unitary, respectively $v_i \in U(N)$ or $u_i \in U(M)$ in the same manner.
- The players make their choices for *n* rounds. Player II wins if $|\langle u_i, u_j \rangle \langle v_i, v_j \rangle| < \epsilon$ for all $1 \le i, j \le n$; otherwise, Player I wins.

Theorem

 $M \equiv_{loc} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{vN}(n, \epsilon)$ for all n and ϵ .

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

- By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_4 -metric spaces.
- Now suppose that U(M) = U(N) as Z₄-metric spaces.
 Since

$$\Re \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, u_j)^2, \quad \Im \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, i \cdot u_j)^2,$$

we know that the ability to win the ordinary EF-game between U(M) and U(N) as \mathbb{Z}_4 -metric spaces allows us to win the games $\mathcal{G}_{vN}(n, \epsilon)$, whence $M \equiv_{loc} N$.

It follows that $M \equiv N$ or $M \equiv N^{\text{op}}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_4 -metric spaces.
- Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

Since

$$\Re \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, u_j)^2, \quad \Im \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, i \cdot u_j)^2,$$

we know that the ability to win the ordinary EF-game between U(M) and U(N) as \mathbb{Z}_4 -metric spaces allows us to win the games $\mathcal{G}_{vN}(n, \epsilon)$, whence $M \equiv_{loc} N$.

It follows that $M \equiv N$ or $M \equiv N^{\text{op}}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_4 -metric spaces.
- Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

Since

$$\Re \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, u_j)^2, \quad \Im \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, i \cdot u_j)^2,$$

we know that the ability to win the ordinary EF-game between U(M) and U(N) as \mathbb{Z}_4 -metric spaces allows us to win the games $\mathcal{G}_{vN}(n, \epsilon)$, whence $M \equiv_{loc} N$.

It follows that $M \equiv N$ or $M \equiv N^{\text{op}}$.

- By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_4 -metric spaces.
- Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_4 -metric spaces.

Since

$$\Re \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, u_j)^2, \quad \Im \langle u_i, u_j \rangle = 1 - \frac{1}{2} d(u_i, i \cdot u_j)^2,$$

we know that the ability to win the ordinary EF-game between U(M) and U(N) as \mathbb{Z}_4 -metric spaces allows us to win the games $\mathcal{G}_{vN}(n, \epsilon)$, whence $M \equiv_{loc} N$.

It follows that $M \equiv N$ or $M \equiv N^{\text{op}}$.

1 Robinsonian Games

2 Ehrenfeucht-Fraïsse Games

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

Suppose that *M* is a II₁ factor and φ is a \forall_n sentence with parameters from *M*, that is, one of the form

$$\sup_{x_1} \inf_{x_2} \cdots Q_{x_n} \theta_{\varphi}(x_1, \ldots, x_n),$$

where θ_{φ} is an expression of the form

$$\max_{1\leq i\leq m} \left| \| \boldsymbol{p}_i(\vec{x}) \|_2 - \boldsymbol{r}_i \right|,$$

with each p_i a *-polynomial with coefficients from M.

Further suppose that r > 0 is a positive number.

We define a two player game G(M, φ, r) as follows: The players take turns playing pairs (M_i, a_i), with each M_i a II₁ factor, M ⊆ M₁ ⊆ M₂ ⊆ ··· ⊆ M_n, and a_i ∈ M_i for each *i*. (Note that if *n* is odd, then the game ends with a move by player I.).
 Player II wins the game if and only if θ^{M_n}_φ(a₁,..., a_n) ≤ r.

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that *M* is a II₁ factor and *φ* is a *∀_n* sentence with parameters from *M*, that is, one of the form

$$\sup_{x_1}\inf_{x_2}\cdots Q_{x_n}\theta_{\varphi}(x_1,\ldots,x_n),$$

where θ_{φ} is an expression of the form

$$\max_{1\leq i\leq m}\left|\|\boldsymbol{p}_i(\vec{\boldsymbol{x}})\|_2-\boldsymbol{r}_i\right|,$$

with each p_i a *-polynomial with coefficients from M.

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that *M* is a II₁ factor and *φ* is a *∀_n* sentence with parameters from *M*, that is, one of the form

$$\sup_{x_1}\inf_{x_2}\cdots Q_{x_n}\theta_{\varphi}(x_1,\ldots,x_n),$$

where θ_{φ} is an expression of the form

$$\max_{1\leq i\leq m}\left|\|\boldsymbol{p}_i(\vec{x})\|_2-r_i\right|,\,$$

with each p_i a *-polynomial with coefficients from M.

Further suppose that r > 0 is a positive number.

We define a two player game G(M, φ, r) as follows: The players take turns playing pairs (M_i, a_i), with each M_i a II₁ factor, M ⊆ M₁ ⊆ M₂ ⊆ ··· ⊆ M_n, and a_i ∈ M_i for each *i*. (Note that if *n* is odd, then the game ends with a move by player I.).
 Player II wins the game if and only if θ^{M_n}_φ(a₁,...,a_n) ≤ r.
The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that *M* is a II₁ factor and *φ* is a *∀_n* sentence with parameters from *M*, that is, one of the form

$$\sup_{x_1}\inf_{x_2}\cdots Q_{x_n}\theta_{\varphi}(x_1,\ldots,x_n),$$

where θ_{φ} is an expression of the form

$$\max_{1\leq i\leq m} \left| \| \boldsymbol{p}_i(\vec{x}) \|_2 - \boldsymbol{r}_i \right|,$$

with each p_i a *-polynomial with coefficients from M.

- Further suppose that r > 0 is a positive number.
- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players take turns playing pairs (M_i, a_i) , with each M_i a II₁ factor, $M \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n$, and $a_i \in M_i$ for each *i*. (Note that if *n* is odd, then the game ends with a move by player I.).

Player II wins the game if and only if $\theta_{\varphi}^{M_n}(a_1,\ldots,a_n) \leq r$.

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that *M* is a II₁ factor and φ is a \forall_n sentence with parameters from *M*, that is, one of the form

$$\sup_{x_1}\inf_{x_2}\cdots Q_{x_n}\theta_{\varphi}(x_1,\ldots,x_n),$$

where θ_{φ} is an expression of the form

$$\max_{1\leq i\leq m} \left| \| \boldsymbol{p}_i(\vec{x}) \|_2 - \boldsymbol{r}_i \right|,$$

with each p_i a *-polynomial with coefficients from M.

- Further suppose that r > 0 is a positive number.
- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players take turns playing pairs (M_i, a_i) , with each M_i a II₁ factor, $M \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n$, and $a_i \in M_i$ for each *i*. (Note that if *n* is odd, then the game ends with a move by player I.).
 - Player II wins the game if and only if $\theta_{\varphi}^{M_n}(a_1,\ldots,a_n) \leq r$.

Definition

1 $M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.

- There is also a notion of $V^{M}(\varphi)$ for $\varphi \in \exists_{n}$ formulae with parameters in M.
- One can analogously define $M \Vdash \varphi \ge r$ for $\varphi \models \forall_n$ or \exists_n formula with parameters in M.

Definition

 $v^{M}(\varphi) := \sup\{r : M \Vdash \varphi \ge r\}.$

Definition

■ $M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.

2
$$V^{M}(\varphi) = \inf\{r : M \Vdash \varphi \leq r\}.$$

There is also a notion of $V^{M}(\varphi)$ for $\varphi \in \exists_{n}$ formulae with parameters in M.

■ One can analogously define $M \Vdash \varphi \ge r$ for $\varphi \models \forall_n$ or \exists_n formula with parameters in M.

Definition

 $v^{M}(\varphi) := \sup\{r : M \Vdash \varphi \ge r\}.$

Definition

1 $M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.

$$2 \quad V^{M}(\varphi) = \inf\{r : M \Vdash \varphi \leq r\}.$$

- There is also a notion of $V^{M}(\varphi)$ for $\varphi \in \exists_{n}$ formulae with parameters in M.
- One can analogously define $M \Vdash \varphi \ge r$ for $\varphi \models \forall_n \text{ or } \exists_n$ formula with parameters in M.

Definition

 $v^{M}(\varphi) := \sup\{r : M \Vdash \varphi \ge r\}.$

Definition

1 $M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.

2
$$V^{M}(\varphi) = \inf\{r : M \Vdash \varphi \leq r\}.$$

- There is also a notion of $V^{M}(\varphi)$ for $\varphi \in \exists_{n}$ formulae with parameters in M.
- One can analogously define $M \Vdash \varphi \ge r$ for $\varphi \models \forall_n \text{ or } \exists_n$ formula with parameters in M.

Definition

$$v^M(\varphi) := \sup\{r : M \Vdash \varphi \ge r\}.$$

Infinitely generic factors

Definition

M is called **infinitely generic** if
$$V^{M}(\varphi) = v^{M}(\varphi)$$
 for all φ .

Lemma

M is infinitely generic if and only if: for every φ , every $\bowtie \in \{\leq, \geq\}$, and every *r*,

$$M\Vdash \varphi \bowtie r \Leftrightarrow \varphi^M \bowtie r.$$

Fact

Infinitely generic II_1 factors exist. In fact, every II_1 factor is a subfactor of an infinitely generic factor of the same density character.

Infinitely generic factors

Definition

M is called **infinitely generic** if
$$V^{M}(\varphi) = v^{M}(\varphi)$$
 for all φ .

Lemma

M is infinitely generic if and only if: for every φ , every $\bowtie \in \{\leq, \geq\}$, and every *r*,

$$\boldsymbol{M} \Vdash \varphi \bowtie \boldsymbol{r} \Leftrightarrow \varphi^{\boldsymbol{M}} \bowtie \boldsymbol{r}.$$

Fact

Infinitely generic II_1 factors exist. In fact, every II_1 factor is a subfactor of an infinitely generic factor of the same density character.

3

Infinitely generic factors

Definition

M is called **infinitely generic** if
$$V^{M}(\varphi) = v^{M}(\varphi)$$
 for all φ .

Lemma

M is infinitely generic if and only if: for every φ , every $\bowtie \in \{\leq, \geq\}$, and every *r*,

$$\boldsymbol{M} \Vdash \varphi \bowtie \boldsymbol{r} \Leftrightarrow \varphi^{\boldsymbol{M}} \bowtie \boldsymbol{r}.$$

Fact

Infinitely generic II_1 factors exist. In fact, every II_1 factor is a subfactor of an infinitely generic factor of the same density character.

3

In the paper "Existentially closed II₁ factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II₁ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is \mathcal{R} infinitely generic?

- Any two infinitely generic II₁ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that R is elementarily equivalent to an infinitely generic II₁ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II₁ factors.

In the paper "Existentially closed II₁ factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II₁ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is \mathcal{R} infinitely generic?

- Any two infinitely generic II₁ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that R is elementarily equivalent to an infinitely generic II₁ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II₁ factors.

In the paper "Existentially closed II₁ factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II₁ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is ${\mathcal R}$ infinitely generic?

- Any two infinitely generic II₁ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that R is elementarily equivalent to an infinitely generic II₁ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II₁ factors.

In the paper "Existentially closed II₁ factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II₁ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is ${\mathcal R}$ infinitely generic?

Any two infinitely generic II₁ factors are elementarily equivalent.

- It thus turns out that the above question is equivalent to knowing that R is elementarily equivalent to an infinitely generic II₁ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II₁ factors.

3

In the paper "Existentially closed II₁ factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II₁ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is ${\mathcal R}$ infinitely generic?

- Any two infinitely generic II₁ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that R is elementarily equivalent to an infinitely generic II₁ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II₁ factors.

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

In the paper "Existentially closed II₁ factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II₁ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is ${\mathcal R}$ infinitely generic?

- Any two infinitely generic II₁ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that R is elementarily equivalent to an infinitely generic II₁ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II₁ factors.

3

References

- ILIJAS FARAH, ISAAC GOLDBRING, BRADD HART, AND DAVID SHERMAN, *Existentially closed II*₁ *factors*, Fundamenta Mathematicae, **233** (2016), 173-196.
- ISAAC GOLDBRING, Enforceable operator algebras, to appear in the Journal of the Institute of Mathematics of Jussieu.
- ISAAC GOLDBRING AND THOMAS SINCLAIR, On Kirchberg's Embedding Problem, Journal of Functional Analysis, 269 (2015), 155-198.
- ISAAC GOLDBRING AND THOMAS SINCLAIR, Games and elementary equivalence of II₁ factors, Pacific Journal of Mathematics, 278 (2015), 103-118.
- ISAAC GOLDBRING AND THOMAS SINCLAIR, Robinson forcing and the quasidiagonality problem, International Journal of Mathematics 28 (2017), Article 1750008.

3