Playing games with $\|_{1}$ factors

Isaac Goldbring

University of California, Irvine

Classification Problems in von Neumann Algebras Banff International Research Station October 3, 2019

2 Ehrenfeucht-Fraïsse Games

3 One more game

Introducing the game

■ We fix a countably infinite set C of distinct symbols (witnesses) that are to represent generators of a separable tracial vNa that two players (traditionally named \forall and \exists) are going to build together (albeit adversarially).

- The two players take turns playing finite sets of expressions of the form $\left\|\left|p(c) \|_{2}-r\right|<\epsilon\right.$, where c is a tuple of variables, $p(c)$ is a *-polynomial, and each player's move is required to extend the previous player's move. These sets are called (open) conditions. Moreover, these conditions are required to be satisfiable, meaning that there should be some vNa A and some tuple a from A such that $\left|\left|\rho(a) \|_{2}-r\right|<\epsilon\right.$ for each such expression in the condition.

Introducing the game

■ We fix a countably infinite set C of distinct symbols (witnesses) that are to represent generators of a separable tracial vNa that two players (traditionally named \forall and \exists) are going to build together (albeit adversarially).

- The two players take turns playing finite sets of expressions of the form $\left|\|p(c)\|_{2}-r\right|<\epsilon$, where c is a tuple of variables, $p(c)$ is a *-polynomial, and each player's move is required to extend the previous player's move. These sets are called (open) conditions. Moreover, these conditions are required to be satisfiable, meaning
that there should be some vNa A and some tuple a from A such
that $\left|\left|\left|D(a) \|_{2}-r\right|<\epsilon\right.\right.$ for each such expression in the condition.

Introducing the game

■ We fix a countably infinite set C of distinct symbols (witnesses) that are to represent generators of a separable tracial vNa that two players (traditionally named \forall and \exists) are going to build together (albeit adversarially).

- The two players take turns playing finite sets of expressions of the form $\left|\|p(c)\|_{2}-r\right|<\epsilon$, where c is a tuple of variables, $p(c)$ is a *-polynomial, and each player's move is required to extend the previous player's move. These sets are called (open) conditions.
\square Moreover, these conditions are required to be satisfiable, meaning that there should be some $\mathrm{vNa} A$ and some tuple a from A such that $\left|\|p(a)\|_{2}-r\right|<\epsilon$ for each such expression in the condition.

Introducing the game (cont'd)

■ We play this game for ω many steps.

- At the end of this game, we have enumerated some countable, satisfiable set of expressions.
- Provided that the players behave, they can ensure that the play is definitive, meaning that the final set of expressions yields complete information about all $*$-polynomials over the variables C (that is, for each $*$-polynomial $p(c)$, there should be a unique r such that the play of the game implies that $\|p(c)\|=r)$ and that this data describes a countable, dense $*$-subalgebra of a unique vNa , which is often called the compiled structure.

Introducing the game (cont'd)

■ We play this game for ω many steps.
■ At the end of this game, we have enumerated some countable, satisfiable set of expressions.
Provided that the players behave, they can ensure that the play is definitive, meaning that the final set of expressions yields
complete information about all $*$-polynomials over the variables C (that is, for each *-polynomial $p(c)$, there should be a unique r such that the play of the game implies that $\|p(c)\|=r$) and that this data describes a countable, dense $*$-subalgebra of a unique vNa , which is often called the compiled structure.

Introducing the game (cont'd)

■ We play this game for ω many steps.
■ At the end of this game, we have enumerated some countable, satisfiable set of expressions.
■ Provided that the players behave, they can ensure that the play is definitive, meaning that the final set of expressions yields complete information about all $*$-polynomials over the variables C (that is, for each $*$-polynomial $p(c)$, there should be a unique r such that the play of the game implies that $\|p(c)\|=r$) and that this data describes a countable, dense $*$-subalgebra of a unique vNa , which is often called the compiled structure.

Enforceable properties

Definition

Given a property P of vNas, we say that P is an enforceable property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If ($P_{i}: i \in \omega$) are all enforceable properties, so is $\Lambda_{i} P$
It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise
Being a locally universal II_{1} factor is enforceable.

Enforceable properties

Definition

Given a property P of vNas, we say that P is an enforceable property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $\left(P_{i}: i \in \omega\right)$ are all enforceable properties, so is $\bigwedge_{i} P_{i}$.
It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise

Being a locally universal $\|_{1}$ factor is enforceable.

Enforceable properties

Definition

Given a property P of $v N a s$, we say that P is an enforceable property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $\left(P_{i}: i \in \omega\right)$ are all enforceable properties, so is $\bigwedge_{i} P_{i}$.
It is natural to ask: are there any interesting enforceable properties of vNas?

Being a locally universal I_{1} factor is enforceable.

Enforceable properties

Definition

Given a property P of vNas, we say that P is an enforceable property is there a strategy for \exists so that, regardless of player \forall 's moves, if \exists follows the strategy, then the compiled structure will have that property.

Conjunction Lemma

If $\left(P_{i}: i \in \omega\right)$ are all enforceable properties, so is $\bigwedge_{i} P_{i}$.
It is natural to ask: are there any interesting enforceable properties of vNas?

Exercise

Being a locally universal II_{1} factor is enforceable.

An example of enforceability

Example

It is enforceable that the compiled vNa is a McDuff II_{1} factor.

Proof.

■ Here's the strategy: suppose that \forall played the open condition p that only mentions witnesses amongst $C_{0} \subseteq C$ (finite).

- \exists can respond by taking $\left(c_{i j}\right) \in C \backslash C_{0}$ and saying that $\left(c_{i j}\right)$ are matrix units that almost commute with C_{0}.
- This is indeed a condition: if p were satisfied in A, then this new set of expressions is satisfiable in $A \otimes M_{2}(\mathbb{C})$.

An example of enforceability

Example

It is enforceable that the compiled vNa is a McDuff II_{1} factor.

Proof.

- We use the fact that a separable II_{1} factor A is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_{2}(\mathbb{C})$ in A that almost commutes with F.
- Here's the strategy: suppose that \forall played the open condition p that only mentions witnesses amongst $C_{0} \subseteq C$ (finite).
- \exists can respond by taking $\left(c_{i j}\right) \in C \backslash C_{0}$ and saying that $\left(c_{j}\right)$ are matrix units that almost commute with C_{0}.
- This is indeed a condition: if p were satisfied in A, then this new set of expressions is satisfiable in $A \otimes M_{2}(\mathbb{C})$.

An example of enforceability

Example

It is enforceable that the compiled vNa is a McDuff II_{1} factor.

Proof.

- We use the fact that a separable II_{1} factor A is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_{2}(\mathbb{C})$ in A that almost commutes with F.
■ Here's the strategy: suppose that \forall played the open condition p that only mentions witnesses amongst $C_{0} \subseteq C$ (finite).

An example of enforceability

Example

It is enforceable that the compiled vNa is a McDuff II_{1} factor.
Proof.

- We use the fact that a separable II_{1} factor A is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_{2}(\mathbb{C})$ in A that almost commutes with F.
■ Here's the strategy: suppose that \forall played the open condition p that only mentions witnesses amongst $C_{0} \subseteq C$ (finite).
$\square \exists$ can respond by taking $\left(c_{i j}\right) \in C \backslash C_{0}$ and saying that $\left(c_{i j}\right)$ are matrix units that almost commute with C_{0}.
- This is indeed a condition: if p were satisfied in A, then this new set of expressions is satisfiable in $A \otimes M_{2}(\mathbb{C})$.

An example of enforceability

Example

It is enforceable that the compiled vNa is a McDuff II_{1} factor.
Proof.

- We use the fact that a separable II_{1} factor A is McDuff if and only if, for every finite set $F \subseteq A$, there is a copy of $M_{2}(\mathbb{C})$ in A that almost commutes with F.
- Here's the strategy: suppose that \forall played the open condition p that only mentions witnesses amongst $C_{0} \subseteq C$ (finite).
$\square \exists$ can respond by taking $\left(c_{i j}\right) \in C \backslash C_{0}$ and saying that $\left(c_{i j}\right)$ are matrix units that almost commute with C_{0}.
\square This is indeed a condition: if p were satisfied in A, then this new set of expressions is satisfiable in $A \otimes M_{2}(\mathbb{C})$.

A crucial fact and a crucial definition

Definition

A $\mathrm{vNa} A$ is enforceable if the property of being isomorphic to A is enforceable.

- By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff $\|_{1}$ factor.
- We let \mathcal{E} denote the enforceable $\|_{1}$ factor, should it exist.
- If it exists, \mathcal{E} is a canonical locally universal $\|_{1}$ factor.

A crucial fact and a crucial definition

Definition

A $\mathrm{vNa} A$ is enforceable if the property of being isomorphic to A is enforceable.

■ By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II_{1} factor.

- We let \mathcal{E} denote the enforceable II_{1} factor, should it exist.

■ If it exists, \mathcal{E} is a canonical locally universal II_{1} factor.

A crucial fact and a crucial definition

Definition

A $\mathrm{vNa} A$ is enforceable if the property of being isomorphic to A is enforceable.

■ By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II_{1} factor.
\square We let \mathcal{E} denote the enforceable II_{1} factor, should it exist.

- If it exists, \mathcal{E} is a canonical locally universal II_{1} factor

A crucial fact and a crucial definition

Definition

A $\mathrm{vNa} A$ is enforceable if the property of being isomorphic to A is enforceable.

- By the conjunction lemma, it thus follows that an enforceable algebra, should it exist, is necessarily a McDuff II_{1} factor.
\square We let \mathcal{E} denote the enforceable II_{1} factor, should it exist.
■ If it exists, \mathcal{E} is a canonical locally universal II_{1} factor.

Some examples

Example

The random graph is the enforceable graph.

Example

With resnect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example

There is ar enforceable Banach space, the Gurarij Banach space.

Non-example

There is no enforceable group. (Highly nontrivial!)

Some examples

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example
 There is an enforceable Banach space, the Gurarij Banach space.

Non-example

There is no enforceable group. (Highly nontrivial!)

Some examples

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example

There is an enforceable Banach space, the Gurarij Banach space.

Non-example

There is no enforceable group. (Highly nontrivial!)

Some examples

Example

The random graph is the enforceable graph.

Example

With respect to fields of some fixed characteristic p, the algebraic closure of the prime field is the enforceable structure.

Example

There is an enforceable Banach space, the Gurarij Banach space.
Non-example
There is no enforceable group. (Highly nontrivial!)

CEP and enforceable models

Theorem

The following are equivalent:
1 CEP has a positive solution.
2 Hyperfiniteness is an enforceable property.
$3 \mathcal{R}$ is the enforceable I_{1} factor.
$4 \mathcal{R}^{\mathcal{U}}$-embeddability is enforceable.

The dichotomy theorem

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa ; or

■ Chaos: for every enforceable property P of $v N a s$, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic $v N a s$ with property P.

Intriguing Question

Sunnose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

- If not, then \mathcal{E} rivals \mathcal{R} as the most canonical separable II_{1} factor (and CEP is false)
- Evidence?
$\square \mathcal{E}$ embeds into all e.c. II_{1} factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary

The dichotomy theorem

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa ; or
- Chaos: for every enforceable property P of vNas, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic $v N$ as with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

- If not, then \mathcal{E} rivals \mathcal{R} as the most canonical separable $\|_{1}$ factor (and CEP is false).
- Evidence?
- \mathcal{E} embeds into all e.c. $\|_{1}$ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary

The dichotomy theorem

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or

■ Chaos: for every enforceable property P of $v N a s$, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?
■ If not, then \mathcal{E} rivals \mathcal{R} as the most canonical separable II_{1} factor (and CEP is false).

- Evidence?

■ \mathcal{E} embeds into all e.c. II_{1} factors.

- Every embedding of \mathcal{E} into \mathcal{E}^{U} is elementary.

The dichotomy theorem

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or

■ Chaos: for every enforceable property P of $v N a s$, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?
■ If not, then \mathcal{E} rivals \mathcal{R} as the most canonical separable II_{1} factor (and CEP is false).

- Evidence?
- \mathcal{E} embeds into all e.c. $\|_{1}$ factors.
- Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

The dichotomy theorem

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa; or

■ Chaos: for every enforceable property P of $v N a s$, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic vNas with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?
■ If not, then \mathcal{E} rivals \mathcal{R} as the most canonical separable II_{1} factor (and CEP is false).
■ Evidence?
$■ \mathcal{E}$ embeds into all e.c. II_{1} factors.

- Every embedding of \mathcal{E} into \mathcal{E}^{U} is elementary.

The dichotomy theorem

Theorem

Exactly one of the two possibilities occurs:

- There is an enforceable vNa ; or
- Chaos: for every enforceable property P of vNas, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic $v N a s$ with property P.

Intriguing Question

Suppose that we know that \mathcal{E} exists. Must it be the case that $\mathcal{E} \cong \mathcal{R}$?

- If not, then \mathcal{E} rivals \mathcal{R} as the most canonical separable $\|_{1}$ factor (and CEP is false).
\square Evidence?
$\square \mathcal{E}$ embeds into all e.c. II_{1} factors.
■ Every embedding of \mathcal{E} into $\mathcal{E}^{\mathcal{U}}$ is elementary.

Square roots and CEP

Definition

$\mathrm{A} v \mathrm{Na} A$ is a tensor square or has a tensor square root if there is a vNa B such that $A \cong B \bar{\otimes} B$.

Clearly \mathcal{R} is a tensor square.

Theorem (G.; G.-Sinclair; Connes)

CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

Square roots and CEP

Definition

A $\mathrm{vNa} A$ is a tensor square or has a tensor square root if there is a vNa B such that $A \cong B \bar{\otimes} B$.

Clearly \mathcal{R} is a tensor square.
Theorem (G.; G.-Sinclair; Connes)
CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

Square roots and CEP

Definition

A $\mathrm{vNa} A$ is a tensor square or has a tensor square root if there is a vNa B such that $A \cong B \bar{\otimes} B$.

Clearly \mathcal{R} is a tensor square.
Theorem (G.; G.-Sinclair; Connes)
CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

Square roots and CEP

Definition

A $\mathrm{vNa} A$ is a tensor square or has a tensor square root if there is a vNa B such that $A \cong B \bar{\otimes} B$.

Clearly \mathcal{R} is a tensor square.

Theorem (G.; G.-Sinclair; Connes)

CEP holds if and only if the property of being a tensor square is enforceable.

Key ingredient: Having every automorphism approximately inner is enforceable.

1 Robinsonian Games

2 Ehrenfeucht-Fraïsse Games

3 One more game

Elementary equivalence

Definition

II_{1} factors M and N are elementary equivalent, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

2 (Farah-Hart-Sherman) If M has Γ (resp. is McDuff) and N does not have Γ (resp. is not McDuff), then $M \not \equiv N$.
3 (Boutonnet-Chifan-Ioana) There are separable $M_{\alpha}\left(\alpha \in 2^{\omega}\right)$ such that $M_{\alpha} \not \equiv M_{\beta}$ for $\alpha \neq \beta$

Elementary equivalence

Definition

II_{1} factors M and N are elementary equivalent, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

1 (Farah-Hart-Sherman) Given any separable M, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic separable N such that $M \equiv N$.
> (Farah-Hart-Sherman) If M has Γ (resp. is McDuff) and N does not have Γ (resp. is not McDuff), then $M \neq N$.
> (Routonnet-Chifan-Ioana) There are senarable $M_{\alpha}\left(\alpha \in 2^{w}\right)$ such that $M_{\alpha} \neq M_{\beta}$ for $\alpha \neq \beta$

Elementary equivalence

Definition

II_{1} factors M and N are elementary equivalent, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

1 (Farah-Hart-Sherman) Given any separable M, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic separable N such that $M \equiv N$.
2 (Farah-Hart-Sherman) If M has Γ (resp. is McDuff) and N does not have Γ (resp. is not McDuff), then $M \not \equiv N$.(Boutonnet-Chifan-Ioana) There are separable $M_{\alpha}\left(\alpha \in 2^{\omega}\right)$ such that $M_{\alpha} \neq M_{\beta}$ for $\alpha \neq \beta$.

Elementary equivalence

Definition

II_{1} factors M and N are elementary equivalent, denoted $M \equiv N$, if there is an ultrafilter \mathcal{U} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$.

Facts and Examples

1 (Farah-Hart-Sherman) Given any separable M, there are $2^{\aleph_{0}}$ many pairwise nonisomorphic separable N such that $M \equiv N$.
2 (Farah-Hart-Sherman) If M has Γ (resp. is McDuff) and N does not have Γ (resp. is not McDuff), then $M \not \equiv N$.
3 (Boutonnet-Chifan-loana) There are separable $M_{\alpha}\left(\alpha \in 2^{\omega}\right)$ such that $M_{\alpha} \not \equiv M_{\beta}$ for $\alpha \neq \beta$.

First-order Dye's Theorem

Observation

$M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Proof.

The following are equivalent:
$1 M \equiv N$

$3(\exists \mathcal{U}) U\left(M^{\mathcal{U}}\right) \cong U\left(N^{\mathcal{U}}\right)$

$5 U(M) \equiv U(N)$.

The equivalence of (2) and (3) is by Dye's Theorem.

First-order Dye's Theorem

Observation

$M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Proof.

The following are equivalent:
$1 M \equiv N$
$2(\exists \mathcal{U}) M^{\mathcal{U}} \cong N^{\mathcal{U}}$
$3(\exists \mathcal{U}) U\left(M^{\mathcal{U}}\right) \cong U\left(N^{\mathcal{U}}\right)$
4 $(\exists \mathcal{U}) U(M)^{\mathcal{U}} \cong U(N)^{\mathcal{U}}$
$5 U(M) \equiv U(N)$.

The equivalence of (2) and (3) is by Dye's Theorem.

The class $\mathcal{K}_{\text {op }}$

Definition

We let $\mathcal{K}_{\mathrm{op}}$ denote the class of M such that $M \equiv M^{\circ p}$.

Remark
 $\mathcal{K}_{\text {op }}$ is an axiomatizable class.

Question
Does every $\|_{1}$ factor belong to $K_{o p}$?

The class $\mathcal{K}_{\text {op }}$

Definition

We let $\mathcal{K}_{\mathrm{op}}$ denote the class of M such that $M \equiv M^{\circ p}$.

Remark

$\mathcal{K}_{\mathrm{op}}$ is an axiomatizable class.

Question
Does every I_{1} factor belong to $K_{o p}$?

The class $\mathcal{K}_{\text {op }}$

Definition

We let $\mathcal{K}_{\mathrm{op}}$ denote the class of M such that $M \equiv M^{\circ p}$.

Remark

$\mathcal{K}_{\mathrm{op}}$ is an axiomatizable class.

Question

Does every II_{1} factor belong to $\mathcal{K}_{\mathrm{op}}$?

A strengthening

Observation

$M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M N \in \mathcal{K}_{\text {op }}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as -metric spaces.

■ $\mathrm{A} \mathbb{Z}_{4}$-metric space is a metric space together with an action of \mathbb{Z}_{4} by isometries.

- We consider $U(M)$ as a \mathbb{Z}_{4}-metric space by letting the generator act by multiplication by i.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

A strengthening

Observation

$M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{\mathrm{op}}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.

- \mathbb{Z}_{4}-metric space is a metric space together with an action of \mathbb{Z}_{4} by isometries.
- We consider $U(M)$ as a \mathbb{Z}_{4}-metric space by letting the generator act by multiplication by i.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

A strengthening

Observation

$M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{\mathrm{op}}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.

■ $\mathrm{A} \mathbb{Z}_{4}$-metric space is a metric space together with an action of \mathbb{Z}_{4} by isometries.
■ We consider $U(M)$ as a \mathbb{Z}_{4}-metric space by letting the generator act by multiplication by i.

Question

Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?

A strengthening

Observation

$M \equiv N$ if and only if $U(M) \equiv U(N)$ (as metric groups).

Theorem (G.-Sinclair)

For $M, N \in \mathcal{K}_{\mathrm{op}}$, we have $M \equiv N$ if and only if $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.
$\square A \mathbb{Z}_{4}$-metric space is a metric space together with an action of \mathbb{Z}_{4} by isometries.
$■$ We consider $U(M)$ as a \mathbb{Z}_{4}-metric space by letting the generator act by multiplication by i.

Question

 Is it true that $M \equiv N$ if and only if $U(M) \equiv U(N)$ as metric spaces?
Banach pairs

Definition

A Banach pair is a pair (X, \mathcal{C}), where X is a normed space and $\mathcal{C} \subseteq(X)_{1}$ are such that:
$\square \mathcal{C}$ is complete;
■ for all $x, y \in \mathcal{C}$ and $\lambda, \mu \in \mathbb{C}$ with $|\lambda|+|\mu| \leq 1$, we have $\lambda x+\mu y \in \mathcal{C} ;$
■ $X=\bigcup_{n} n \cdot \mathcal{C}$.

Main example
 If M is a I_{1} factor, then $\left(M,(M)_{1}\right)$ is a Banach pair, where M is considered a normed space in the 2-norm.

Banach pairs

Definition

A Banach pair is a pair (X, \mathcal{C}), where X is a normed space and $\mathcal{C} \subseteq(X)_{1}$ are such that:

■ \mathcal{C} is complete;
\square for all $x, y \in \mathcal{C}$ and $\lambda, \mu \in \mathbb{C}$ with $|\lambda|+|\mu| \leq 1$, we have $\lambda x+\mu y \in \mathcal{C} ;$
■ $X=\bigcup_{n} n \cdot \mathcal{C}$.

Main example

If M is a $\|_{1}$ factor, then $\left(M,(M)_{1}\right)$ is a Banach pair, where M is considered a normed space in the 2-norm.

A game for Banach pairs

Given $n \in \mathbb{N}, \epsilon>0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

- Player I chooses a one-dimensional subspace, either $E_{1} \subset X$ or $F_{1} \subset Y$. Player II then chooses a subspace, respectively $F_{1} \subset Y$ or $E_{1} \subset X$, and a linear bijection $T_{1}: E_{1} \rightarrow F_{1}$
- At round i, Player I chooses an at most one-dimensional extension, either $E_{i} \supset E_{i-1}$ or $F_{i} \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_{i} \subset Y$ or $E_{i} \subset X$, and a linear bijection $T_{i}: E_{i} \rightarrow F_{i}$ which extends T_{i-1}
- The players make their choices for n rounds. Player II wins if $T_{n}: E_{n} \rightarrow F_{n}$ is an ϵ-almost isometry; otherwise, Player I wins.

Proposition

$(X, \mathcal{C}) \equiv(Y, \mathcal{D})$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all n and

A game for Banach pairs

Given $n \in \mathbb{N}, \epsilon>0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

■ Player I chooses a one-dimensional subspace, either $E_{1} \subset X$ or $F_{1} \subset Y$. Player II then chooses a subspace, respectively $F_{1} \subset Y$ or $E_{1} \subset X$, and a linear bijection $T_{1}: E_{1} \rightarrow F_{1}$.

- At round i, Player I chooses an at most one-dimensional
extension, either $E_{i} \supset E_{i-1}$ or $F_{i} \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_{i} \subset Y$ or $E_{i} \subset X$, and a linear bijection $T_{i}: E_{i} \rightarrow F_{i}$ which extends T_{i-1}
■ The players make their choices for n rounds. Player II wins if $T_{n}: E_{n} \rightarrow F_{n}$ is an ϵ-almost isometry; otherwise, Player I wins.
 for all n and

A game for Banach pairs

Given $n \in \mathbb{N}, \epsilon>0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :

■ Player I chooses a one-dimensional subspace, either $E_{1} \subset X$ or $F_{1} \subset Y$. Player II then chooses a subspace, respectively $F_{1} \subset Y$ or $E_{1} \subset X$, and a linear bijection $T_{1}: E_{1} \rightarrow F_{1}$.
■ At round i, Player I chooses an at most one-dimensional extension, either $E_{i} \supset E_{i-1}$ or $F_{i} \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_{i} \subset Y$ or $E_{i} \subset X$, and a linear bijection $T_{i}: E_{i} \rightarrow F_{i}$ which extends T_{i-1}.
> - The players make their choices for n rounds. Player II wins if F_{n} is an ϵ-almost isometry; otherwise, Player I wins.
\square for all n and

A game for Banach pairs

Given $n \in \mathbb{N}, \epsilon>0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :
\square Player I chooses a one-dimensional subspace, either $E_{1} \subset X$ or $F_{1} \subset Y$. Player II then chooses a subspace, respectively $F_{1} \subset Y$ or $E_{1} \subset X$, and a linear bijection $T_{1}: E_{1} \rightarrow F_{1}$.
■ At round i, Player I chooses an at most one-dimensional extension, either $E_{i} \supset E_{i-1}$ or $F_{i} \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_{i} \subset Y$ or $E_{i} \subset X$, and a linear bijection $T_{i}: E_{i} \rightarrow F_{i}$ which extends T_{i-1}.
\square The players make their choices for n rounds. Player II wins if $T_{n}: E_{n} \rightarrow F_{n}$ is an ϵ-almost isometry; otherwise, Player I wins.

[^0](\cdot, D) if and only if player II has a winning strategy for $G(n, \epsilon)$

A game for Banach pairs

Given $n \in \mathbb{N}, \epsilon>0$, we describe the game $\mathcal{G}(n, \epsilon)$ played by two players with Banach pairs (X, \mathcal{C}) and (Y, \mathcal{D}) :
$■$ Player I chooses a one-dimensional subspace, either $E_{1} \subset X$ or $F_{1} \subset Y$. Player II then chooses a subspace, respectively $F_{1} \subset Y$ or $E_{1} \subset X$, and a linear bijection $T_{1}: E_{1} \rightarrow F_{1}$.
■ At round i, Player I chooses an at most one-dimensional extension, either $E_{i} \supset E_{i-1}$ or $F_{i} \supset F_{i-1}$. Player II then chooses a subspace, respectively $F_{i} \subset Y$ or $E_{i} \subset X$, and a linear bijection $T_{i}: E_{i} \rightarrow F_{i}$ which extends T_{i-1}.

- The players make their choices for n rounds. Player II wins if $T_{n}: E_{n} \rightarrow F_{n}$ is an ϵ-almost isometry; otherwise, Player I wins.

Proposition

$(X, \mathcal{C}) \equiv(Y, \mathcal{D})$ if and only if player II has a winning strategy for $\mathcal{G}(n, \epsilon)$ for all n and ϵ.

First reduction

Fact (Kirchberg)

If M and N are II_{1} factors and there is an isometry $T: L^{2}(M) \rightarrow L^{2}(N)$ that maps M onto N contractively, then either $M \cong N$ or $M \cong N^{\circ p}$.

Definition

We say that M and N are locally equivalent, denoted $M \equiv$ loc N, if $\left(M,(M)_{1}\right) \equiv\left(N,(N)_{1}\right)$ as Banach pairs.

Corollary
$M==_{\text {oc }} N$ if and only if $M \equiv N$ or $M \equiv N o p$. In particular, if $M, N \in \mathcal{K}_{0 p}$, then $M \equiv_{\text {loc }} N$ if and only if $M \equiv N$.

First reduction

Fact (Kirchberg)

If M and N are II_{1} factors and there is an isometry $T: L^{2}(M) \rightarrow L^{2}(N)$ that maps M onto N contractively, then either $M \cong N$ or $M \cong N^{\circ p}$.

Definition

We say that M and N are locally equivalent, denoted $M \equiv_{\text {loc }} N$, if $\left(M,(M)_{1}\right) \equiv\left(N,(N)_{1}\right)$ as Banach pairs.

Corollary

$M={ }_{10 \mathrm{C}} N$ if and only if $M \equiv N$ or $M \equiv N^{\circ p}$. In particular, if $M, N \in \mathcal{K}_{0 p}$, then $M \equiv_{\text {oc }} N$ if and only if $M \equiv N$.

First reduction

Fact (Kirchberg)

If M and N are II_{1} factors and there is an isometry $T: L^{2}(M) \rightarrow L^{2}(N)$ that maps M onto N contractively, then either $M \cong N$ or $M \cong N^{\circ p}$.

Definition

We say that M and N are locally equivalent, denoted $M \equiv_{\text {loc }} N$, if $\left(M,(M)_{1}\right) \equiv\left(N,(N)_{1}\right)$ as Banach pairs.

Corollary

$M \equiv{ }_{\mathrm{loc}} N$ if and only if $M \equiv N$ or $M \equiv N^{\mathrm{op}}$. In particular, if $M, N \in \mathcal{K}_{\mathrm{op}}$, then $M \equiv{ }_{\text {loc }} N$ if and only if $M \equiv N$.

A different game

We define the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ played by two players with II_{1}-factors M and N as follows:

- At stage i, Player I chooses a unitary either $u_{i} \in U(M)$ or $v_{i} \in U(N)$. Player II then chooses a unitary, respectively $v_{i} \in U(N)$ or $u_{i} \in U(M)$ in the same manner.
- The players make their choices for n rounds. Player II wins if $\left\langle u_{i}, u_{j}\right\rangle-\left\langle v_{i}, v_{j}\right\rangle \mid<\epsilon$ for all $1 \leq i, j \leq n$; otherwise, Player I wins.

Theorem

$M \equiv_{\text {loc }} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ for all n and ϵ

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

A different game

We define the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ played by two players with II_{1}-factors M and N as follows:

■ At stage i, Player I chooses a unitary either $u_{i} \in U(M)$ or $v_{i} \in U(N)$. Player II then chooses a unitary, respectively $v_{i} \in U(N)$ or $u_{i} \in U(M)$ in the same manner.

- The players make their choices for n rounds. Player II wins if for all $1 \leq i, j \leq n$; otherwise, Player I wins.

Theorem

$\mathbf{M}={ }_{10 c} \mathbf{N}$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ for all n and

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

A different game

We define the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ played by two players with I_{1}-factors M and N as follows:

■ At stage i, Player I chooses a unitary either $u_{i} \in U(M)$ or $v_{i} \in U(N)$. Player II then chooses a unitary, respectively $v_{i} \in U(N)$ or $u_{i} \in U(M)$ in the same manner.
■ The players make their choices for n rounds. Player II wins if $\left|\left\langle u_{i}, u_{j}\right\rangle-\left\langle v_{i}, v_{j}\right\rangle\right|<\epsilon$ for all $1 \leq i, j \leq n$; otherwise, Player I wins.
$M \equiv_{\text {loc }} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ for all n and ϵ

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

A different game

We define the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ played by two players with I_{1}-factors M and N as follows:

■ At stage i, Player I chooses a unitary either $u_{i} \in U(M)$ or $v_{i} \in U(N)$. Player II then chooses a unitary, respectively $v_{i} \in U(N)$ or $u_{i} \in U(M)$ in the same manner.
■ The players make their choices for n rounds. Player II wins if $\left|\left\langle u_{i}, u_{j}\right\rangle-\left\langle v_{i}, v_{j}\right\rangle\right|<\epsilon$ for all $1 \leq i, j \leq n$; otherwise, Player I wins.

Theorem

$M \equiv_{\text {loc }} N$ if and only if Player II has a winning strategy for the game $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$ for all n and ϵ.

One direction uses weak stability of unitaries. The other direction involves the "unitary transform" of a formula.

Proof of the Main Theorem

■ By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_{4}-metric spaces.

- Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.
- Since

we know that the ability to win the ordinary EF-game between $U(M)$ and $U(N)$ as \mathbb{Z}_{4}-metric spaces allows us to win the games $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$, whence $M \equiv_{\text {loc }} N$.
■ It follows that $M \equiv N$ or $M \equiv N^{\circ p}$.

Proof of the Main Theorem

■ By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_{4}-metric spaces.
$■$ Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.

- Since
we know that the ability to win the ordinary EF-game between $U(M)$ and $U(N)$ as \mathbb{Z}_{4}-metric spaces allows us to win the games $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$, whence $M \equiv_{\text {loc }} N$.
■ It follows that $M \equiv N$ or $M \equiv N^{\circ p}$.

Proof of the Main Theorem

■ By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_{4}-metric spaces.
\square Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.

- Since

$$
\Re\left\langle u_{i}, u_{j}\right\rangle=1-\frac{1}{2} d\left(u_{i}, u_{j}\right)^{2}, \quad \Im\left\langle u_{i}, u_{j}\right\rangle=1-\frac{1}{2} d\left(u_{i}, i \cdot u_{j}\right)^{2}
$$

we know that the ability to win the ordinary EF-game between $U(M)$ and $U(N)$ as \mathbb{Z}_{4}-metric spaces allows us to win the games $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$, whence $M \equiv_{\text {loc }} N$.

- It follows that $M \equiv N$ or $M \equiv N^{\circ p}$

Proof of the Main Theorem

■ By first-order Dye, if $M \equiv N$, then $U(M) \equiv U(N)$ as metric groups, and thus as \mathbb{Z}_{4}-metric spaces.
\square Now suppose that $U(M) \equiv U(N)$ as \mathbb{Z}_{4}-metric spaces.

- Since

$$
\Re\left\langle u_{i}, u_{j}\right\rangle=1-\frac{1}{2} d\left(u_{i}, u_{j}\right)^{2}, \quad \Im\left\langle u_{i}, u_{j}\right\rangle=1-\frac{1}{2} d\left(u_{i}, i \cdot u_{j}\right)^{2}
$$

we know that the ability to win the ordinary EF-game between $U(M)$ and $U(N)$ as \mathbb{Z}_{4}-metric spaces allows us to win the games $\mathcal{G}_{\mathrm{vN}}(n, \epsilon)$, whence $M \equiv_{\text {loc }} N$.
■ It follows that $M \equiv N$ or $M \equiv N^{\circ \mathrm{op}}$.

1 Robinsonian Games

2 Ehrenfeucht-Fraïsse Games

3 One more game

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

- Suppose that M is a I_{1} factor and φ is a \forall_{n} sentence with parameters from M, that is, one of the form

$$
\operatorname{supinf}_{x_{2}} \ldots Q_{x_{n}} A\left(x_{1}, \ldots, x_{n}\right),
$$

where θ_{φ} is an expression of the form

```
max }||\mp@subsup{n}{i}{}(\vec{x})\mp@subsup{|}{2}{}-\mp@subsup{r}{i}{}
```

with each p_{i} a *-polynomial with coefficients from M.
■ Further suppose that $r>0$ is a positive number.

- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players take turns playing pairs $\left(M_{i}, a_{i}\right)$, with each M_{i} a I_{1} factor, $M \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{n}$, and $a_{i} \in M_{i}$ for each i. (Note that if n is odd, then the game ends with a move by player I.).
- Player II wins the game if and only if $\theta_{\varphi}^{M_{n}}\left(a_{1}, \ldots, a_{n}\right)_{\substack{ }} r_{i \equiv}$,

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that M is a $\|_{1}$ factor and φ is a \forall_{n} sentence with parameters from M, that is, one of the form

$$
\sup _{x_{1}} \inf _{x_{2}} \cdots Q_{x_{n}} \theta_{\varphi}\left(x_{1}, \ldots, x_{n}\right)
$$

where θ_{φ} is an expression of the form

$$
\max _{1 \leq i \leq m}\left|\left\|p_{i}(\vec{x})\right\|_{2}-r_{i}\right|
$$

with each p_{i} a $*$-polynomial with coefficients from M.
\square

- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players take turns playing pairs $\left(M_{i}, a_{i}\right)$, with each M_{i} a I_{1} factor, $M \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{n}$, and $a_{i} \in M_{i}$ for each i. (Note that if n is odd, then the game ends with a move by player I.).
- Player II wins the game if and only if $\theta_{\varphi}^{M_{n}}\left(a_{1}\right.$

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that M is a $\|_{1}$ factor and φ is a \forall_{n} sentence with parameters from M, that is, one of the form

$$
\sup _{x_{1}} \inf _{x_{2}} \cdots Q_{x_{n}} \theta_{\varphi}\left(x_{1}, \ldots, x_{n}\right)
$$

where θ_{φ} is an expression of the form

$$
\max _{1 \leq i \leq m}\left|\left\|p_{i}(\vec{x})\right\|_{2}-r_{i}\right|
$$

with each p_{i} a *-polynomial with coefficients from M.
$■$ Further suppose that $r>0$ is a positive number.

- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players
take turns playing pairs $\left(M_{i}, a_{i}\right)$, with each M_{i} a I_{1} factor,
$M \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{n}$, and $a_{i} \in M_{i}$ for each i. (Note that if n is
odd, then the game ends with a move by player I.).
- Player II wins the game if and only if $\theta_{\varphi}^{M_{n}}\left(a_{1}\right.$

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that M is a $\|_{1}$ factor and φ is a \forall_{n} sentence with parameters from M, that is, one of the form

$$
\sup _{x_{1}} \inf _{x_{2}} \cdots Q_{x_{n}} \theta_{\varphi}\left(x_{1}, \ldots, x_{n}\right)
$$

where θ_{φ} is an expression of the form

$$
\max _{1 \leq i \leq m}\left|\left\|p_{i}(\vec{x})\right\|_{2}-r_{i}\right|
$$

with each p_{i} a *-polynomial with coefficients from M.

- Further suppose that $r>0$ is a positive number.
- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players take turns playing pairs $\left(M_{i}, a_{i}\right)$, with each M_{i} a $\|_{1}$ factor, $M \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{n}$, and $a_{i} \in M_{i}$ for each i. (Note that if n is odd, then the game ends with a move by player I.).

The infinite forcing game $\mathcal{G}(M, \varphi, r)$

Assume CEP.

■ Suppose that M is a $\|_{1}$ factor and φ is a \forall_{n} sentence with parameters from M, that is, one of the form

$$
\sup _{x_{1}} \inf _{x_{2}} \cdots Q_{x_{n}} \theta_{\varphi}\left(x_{1}, \ldots, x_{n}\right)
$$

where θ_{φ} is an expression of the form

$$
\max _{1 \leq i \leq m}\left|\left\|p_{i}(\vec{x})\right\|_{2}-r_{i}\right|
$$

with each p_{i} a *-polynomial with coefficients from M.

- Further suppose that $r>0$ is a positive number.
- We define a two player game $\mathcal{G}(M, \varphi, r)$ as follows: The players take turns playing pairs $\left(M_{i}, a_{i}\right)$, with each M_{i} a $\|_{1}$ factor, $M \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{n}$, and $a_{i} \in M_{i}$ for each i. (Note that if n is odd, then the game ends with a move by player I.).
\square Player II wins the game if and only if $\theta_{\varphi}^{M_{n}}\left(a_{1}, \ldots, a_{n}\right) \leq r$.

The forcing values

Definition

$1 M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.
$2 V^{M}(\varphi)=\inf \{r: M \Vdash \varphi \leq r\}$.

- There is also a notion of $V^{M}(\varphi)$ for φ a \exists_{n} formulae with parameters in M.
- One can analogously define $M \Vdash \varphi \geq r$ for φ a \forall_{n} or \exists_{n} formula with parameters in M.

Definition

$v^{M}(\varphi):=\sup \{r$ $M \Vdash$

The forcing values

Definition

$1 M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.
$2 V^{M}(\varphi)=\inf \{r: M \Vdash \varphi \leq r\}$.

- There is also a notion of $V^{M}(\varphi)$ for φ a \exists_{n} formulae with parameters in M.
- One can analogously define $M \Vdash \varphi \geq r$ for φ a \forall_{n} or \exists_{n} formula with parameters in M.

Definition

$v^{M}(\varphi):=\sup \{r: M \Vdash \varphi \geq r\}$

The forcing values

Definition

$1 M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.
$2 V^{M}(\varphi)=\inf \{r: M \Vdash \varphi \leq r\}$.

- There is also a notion of $V^{M}(\varphi)$ for φ a \exists_{n} formulae with parameters in M.
■ One can analogously define $M \Vdash \varphi \geq r$ for φ a \forall_{n} or \exists_{n} formula with parameters in M.

Definition

$v^{M}(\varphi):=\sup \{r: M \Vdash \varphi \geq r\}$

The forcing values

Definition

$1 M \Vdash \varphi \leq r$ if and only if player II has a winning strategy in $\mathcal{G}(M, \varphi, r)$.
$2 V^{M}(\varphi)=\inf \{r: M \Vdash \varphi \leq r\}$.

- There is also a notion of $V^{M}(\varphi)$ for φ a \exists_{n} formulae with parameters in M.
■ One can analogously define $M \Vdash \varphi \geq r$ for φ a \forall_{n} or \exists_{n} formula with parameters in M.

Definition

$v^{M}(\varphi):=\sup \{r: M \Vdash \varphi \geq r\}$.

Infinitely generic factors

Definition

M is called infinitely generic if $V^{M}(\varphi)=v^{M}(\varphi)$ for all φ.

Lemma

M is infinitely generic if and only if: for every φ, every $\bowtie \in\{\leq, \geq\}$, and every r,

Fact

Infinitely generic I_{1} factors exist. In fact, every II_{1} factor is a subfactor of an infinitely generic factor of the same density character.

Infinitely generic factors

Definition

M is called infinitely generic if $V^{M}(\varphi)=v^{M}(\varphi)$ for all φ.
Lemma
M is infinitely generic if and only if: for every φ, every $\bowtie \in\{\leq, \geq\}$, and every r,

$$
M \Vdash \varphi \bowtie r \Leftrightarrow \varphi^{M} \bowtie r .
$$

Fact

Infinitely generic I_{1} factors exist. In fact, every II_{j} factor is a subfactor of an infinitely generic factor of the same density character.

Infinitely generic factors

Definition

M is called infinitely generic if $V^{M}(\varphi)=v^{M}(\varphi)$ for all φ.

Lemma

M is infinitely generic if and only if: for every φ, every $\bowtie \in\{\leq, \geq\}$, and every r,

$$
M \Vdash \varphi \bowtie r \Leftrightarrow \varphi^{M} \bowtie r .
$$

Fact

Infinitely generic $\|_{1}$ factors exist. In fact, every $\|_{1}$ factor is a subfactor of an infinitely generic factor of the same density character.

An open question

In the paper "Existentially closed II_{1} factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II_{1} factor \mathcal{R} is infinitely generic

Question

Is \mathcal{R} infinitely generic?

- Anny two infinitely generic II_{1} factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that \mathcal{R} is elementarily equivalent to an infinitely generic II_{1} factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II_{1} factors.

An open question

In the paper "Existentially closed II_{1} factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite $\|_{1}$ factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is \mathcal{R} infinitely generic?

- Any two infinitely generic II_{1} factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that \mathcal{R} is elementarily equivalent to an infinitely generic II_{1} factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II_{1} factors.

An open question

In the paper "Existentially closed II_{1} factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II_{1} factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is \mathcal{R} infinitely generic?

- Any two infinitely generic $\|_{1}$ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that \mathcal{R} is elementarily equivalent to an infinitely generic $\|_{1}$ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed I_{1} factors.

An open question

In the paper "Existentially closed II_{1} factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II_{1} factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

 Is \mathcal{R} infinitely generic?- Any two infinitely generic II_{1} factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that \mathcal{R} is elementarily equivalent to an infinitely generic $\|_{1}$ factor.
- If the question has a negative answer this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II_{1} factors.

An open question

In the paper "Existentially closed II_{1} factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II_{1} factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is \mathcal{R} infinitely generic?

- Any two infinitely generic $\|_{1}$ factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that \mathcal{R} is elementarily equivalent to an infinitely generic $\|_{1}$ factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed II_{1} factors.

An open question

In the paper "Existentially closed II_{1} factors" (joint with Farah, Hart, and Sherman), we claimed that the hyperfinite II_{1} factor \mathcal{R} is infinitely generic but our proof there is completely wrong.

Question

Is \mathcal{R} infinitely generic?

- Any two infinitely generic II_{1} factors are elementarily equivalent.
- It thus turns out that the above question is equivalent to knowing that \mathcal{R} is elementarily equivalent to an infinitely generic II_{1} factor.
- If the question has a negative answer, this would be interesting as then we would have our first example of two non-elementarily equivalent existentially closed I_{1} factors.

References

- Ilijas Farah, Isaac Goldbring, Bradd Hart, and David Sherman, Existentially closed I_{1} factors, Fundamenta Mathematicae, 233 (2016), 173-196.
■ ISAAC GOLDBRING, Enforceable operator algebras, to appear in the Journal of the Institute of Mathematics of Jussieu.
■ Isaac Goldbring and Thomas Sinclair, On Kirchberg's Embedding Problem, Journal of Functional Analysis, 269 (2015), 155-198.
■ Isaac Goldbring and Thomas Sinclair, Games and elementary equivalence of I_{1} factors, Pacific Journal of Mathematics, 278 (2015), 103-118.
■ Isaac Goldbring and Thomas Sinclair, Robinson forcing and the quasidiagonality problem, International Journal of Mathematics 28 (2017), Article 1750008.

[^0]: Proposition

