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(Tracial) Non-commutative Laws

In probability theory, if (X1, . . . ,Xd) are bounded real, random variables,
then their law is a probability measure on [−R,R]d .

A non-commutative law is a trace on C ([−R,R])∗d (for some R).

Σd ,R denotes this trace space with weak-∗ topology.

Equivalently, an element of Σd ,R is a unital, positive, tracial map
µ : C〈X1, . . . ,Xd〉 → C satisfying

|µ(Xi1 . . .Xin)| ≤ Rn.

This encodes the non-commutative moments of some tuple of
non-commutative random variables.
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von Neumann Algebras

Tracial non-commutative laws ↔ finite W ∗-algebras with preferred trace
and generators (up to isomorphism).

→ GNS construction.

← evaluate moments of your generators.
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von Neumann Algebras

Question

When is W ∗(µ) ∼= W ∗(ν)?

Commutative case: Any two probability measures µ and ν with no atoms
produce isomorphic tracial W ∗-algebras (L∞(µ), µ) ∼= (L∞(ν), ν).

Non-commutative case:

There are many non-isomorphic II1 factors (Murray-von Neumann,
McDuff, . . . ).

We don’t know whether L(Fn) and L(Fm) are isomorphic for n 6= m.

Even after imposing some regularity conditions on the laws (e.g. finite
free entropy), we don’t necessarily get isomorphic W ∗-algebras
(example of Nate Brown of a semicircular perturbation of generators
of a property (T) factor).
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Random Matrices and Free Probability

Some non-commutative laws arise naturally as the large N limit of some
random matrix models.

Consider probability measures µ(N) on MN(C)dsa.

Let X (N) be the associated random variable (tuple of self-adjoint random
matrices).

Then we get a random non-commutative law λX (N) by evaluating the
non-commutative law of X (N) as an element of MN(C) with the canonical
(normalized) trace τN .

Does λX (N) converge in probability to some µ ∈ Σd ,R?
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Random Matrices and Free Probability

Example

Let X (N) be Gaussian, with probability density ∼ exp(−N2
∑

j τN(x2j )).

Then λX (N) converges in probability to the law of (S1, . . . ,Sd), where are
freely independent semicirculars,

that is, Sj has semicircular spectral density (1/2π)
√

4− x2 dx on [−2, 2]
and W ∗(S1, . . . ,Sd) = W ∗(S1) ∗ · · · ∗W ∗(Sd) ∼= L(Fd).

Theorem (Voiculescu 1998)

If X
(N)
1 , . . . , X

(N)
d are independent random matrices (bounded in operator

norm), their distribution is unitarily invariant, and the spectral distribution

of each X
(N)
j converges, then the NC law of X

(N)
1 , . . . , X

(N)
d converges

and they become freely independent in the limit.
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Convex and Semi-concave Potentials

Generalizing the Gaussian case, we can consider the random matrix density
exp(−N2V (N)(x)), where V (N)(x) defined by adding (and/or multiplying!)
traces of non-commutative polynomials.

Theorem (J. 2018, cf. Guionnet & Maurel-Segala 2006, Guionnet &
Shlyakhtenko 2009, Guionnet & Shlyakhtenko & Dabrowski 2016)

Let 0 < c < C . Suppose that V (N) : MN(C)dsa → R satisfies that
V (N)(x)− (c/2)‖x‖22 is convex and V (N)(x)− (C/2)‖x‖22 is semi-concave.
Suppose that DV (N) is well-approximated by trace polynomials (∗). Then
the NC law of X (N) converge in probability to some non-commutative law,
called a free Gibbs law for V (N).

Trace polynomials are functions like
(x1, . . . , xn) 7→ x1 + τ(x2)x1x2 + 3τ(x2x3)1− τ(x1x3x2)τ(x3)x3x2.

We want the approximation to occur uniformly on each operator
norm ball, with the error measured in ‖·‖2 with respect to τN .
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Examples

Examples

This theorem covers the following cases:

If V (N) is a small perturbation of the quadratic ‖x‖22 by some trace
polynomial or analytic function.

This includes generators of q-Gaussian algebras for q small
(Dabrowski 2010, Guionnet & Shlyakhtenko 2014).

Given free semicirculars (S1, . . . ,Sd) and self-adjoint NC polynomials
p1, . . . , pd , the law of S + εp(S) will be such such a free Gibbs law for
ε small enough (depending on the first and second derivatives of p).
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Transport to Free Semicircular Family

Theorem (J. 2019, cf. Guionnet & Shlyakhtenko 2014, Guionnet &
Shlyakhtenko & Dabrowski 2016)

The associated von Neumann algebra W ∗(X1, . . . ,Xd) is isomorphic to
L(Fd) (the Gaussian case).

Classically, if a measure µ has a smooth enough density, you can
construct a function f by solving some PDE, such that f∗µ =
Gaussian (see e.g. Otto-Villani 2000).

Do this for each µ(N) and get some f (N).

Argue that f (N) is well-approximated by trace polynomials and has a
well-defined large-N limit f (in some appropriate space of functions).

Same for inverse function of f (N).

Then (S1, . . . ,Sd) := f (X1, . . . ,Xd) are free semi-circular generators,
so W ∗(X ) ∼= L(Fd).
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Triangular Transport

Theorem (J. 2019)

There is an isomorphism φ : W ∗(X1, . . . ,Xd)→W ∗(S1, . . . ,Sd) ∼= L(Fd)
such that

φ(W ∗(X1, . . . ,Xk)) = W ∗(S1, . . . ,Sk) for each k = 1, . . . , d .

In particular, W ∗(X1) is conjugate to the generator MASA in L(Fd). So
for instance, it is maximal abelian, maximal amenable (due to Popa 1983),
freely complemented, etc.
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Application and Remarks

This result applies to all the examples listed earlier. In particular, if
(S1, . . . ,Sd) are semicircular, then S1 + εp(S) generates a freely
complemented MASA for ε small enough (p self-adjoint).

Question

Under what conditions on self-adjoint p will p(S1, . . . ,Sd) generate a
freely complemented MASA? Is there some sense in which this is true
“generically”?

Question (Hayes, Peterson-Thom, Popa)

If N ⊆ L(Fd) is maximal amenable, then is L2(L(Fd))	 L2(N) a coarse
N-N-bimodule? Of course, this would be true if it is freely complemented.

Question (Popa and others?)

What W ∗-algebras can embed into L(Fd)? Does L(Fd) contain any II1
factors not isomorphic to R or L(Ft) (interpolated free group factors)?
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Ideas of Proof

By iteration, the previous theorem can be reduced to the following:

Theorem

Let V (N)(x , y) be a sequence of nice convex potentials as above with
x ∈ MN(C)dsa and y ∈ MN(C)d

′
sa . Let W ∗(X ,Y ) be the corresponding

W ∗-algebra of the limiting free Gibbs law. Then
W ∗(X ,Y ) ∼= W ∗(S) ∗W ∗(Y ).

David A. Jekel (UCLA) NC Transport Oct. 1, 2019 12 / 19



Ideas of Proof

Let (X (N),Y (N)) be the corresponding random variables.

X (N) has a nice conditional probability distribution given Y (N) = y ,

denoted by µ
(N)
y . It is given by V (N)(·, y).

Construct f (N)(x , y) such that f (N)(·, y) pushes forward µ
(N)
y to

Gaussian.

Patching together the fibers, (f (N)(X (N),Y (N)),Y (N)) has the same
law as (S (N),Y (N)), where S (N) is an independent Gaussian.

Show that f (N)(x , y) is a nice function of (x , y) jointly, is
well-approximated by trace polynomials, has a large N limit f .

In the large N limit, S (N) and Y (N) become freely independent.

So W ∗(X ,Y ) = W ∗(f (X ,Y ),Y ) ∼= W ∗(S ,Y ) = W ∗(S) ∗W ∗(Y ).
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Show that f (N)(x , y) is a nice function of (x , y) jointly, is
well-approximated by trace polynomials, has a large N limit f .

In the large N limit, S (N) and Y (N) become freely independent.

So W ∗(X ,Y ) = W ∗(f (X ,Y ),Y ) ∼= W ∗(S ,Y ) = W ∗(S) ∗W ∗(Y ).
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Some of the Details I was Hiding

I need a dimension-independent formulation of the PDE’s for
constructing f (N). (Don’t like the N2 hanging around in the
exponent.)

To show f (N) is approximated by trace polynomials, I argue that f (N)

can be obtained from DV (N) by iterating some pretty explicit
operations which will preserve this approximation property (e.g. heat
semigroup, composition, limits).

To get convergence of this iteration scheme, I use some
dimension-independent regularity of the solutions to the PDE that
relies on the convexity and semi-concavity of V (N).

Finally, to understand the large N limit, we need an appropriate space
of functions . . .
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A Generalized Functional Calculus

Consider functions (Rω)dsa → L2(Rω) that are bounded on operator norm
balls, equipped with the family of seminorms

‖f ‖u,R = sup
‖x‖∞≤R

‖f (x)‖2.

This is a Fréchet space.

Every trace polynomial f in d-variables defines such a function. Take the

closure of these functions in the above Fréchet space and call it TrP
1
d .
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The L2-continuous Functional Calculus

Lemma

It makes sense to evaluate f ∈ TrP
1
d on a self-adjoint tuple in (M, τ),

provided M embeds into Rω. This evaluation produces an element of
L2(M, τ), and it is independent of the choice of embedding.

Lemma

If M = W ∗(X1, . . . ,Xd), then every element of M can be realized as
f (X1, . . . ,Xd) for such an f (not unique). We can arrange that f is
uniformly bounded in operator norm, and uniformly continuous in ‖·‖2.

Note: This f makes sense to evaluate on any tuple of self-adjoints in Rω,
not just the original (X1, . . . ,Xd) or those coming from M. In particular,
we can still evaluate f on perturbations of X by something outside of M,
or on tuples of matrices.
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A Generalized Functional Calculus

Properties:

Self-adjoint tuples of functions in TrP
1
d are closed under composition,

provided the outer function is ‖·‖2-uniformly continuous.

These functions are closed under (the large N limit) of convolution
with the Gaussian density.

They are closed under certain algebraic operations.
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Role in the Proof

The transport maps in the theorems above are tuples of functions in this
space, which are in fact Lipschitz in ‖·‖2.

The large-N limit of functions on matrices is captured by the notion of
asymptotic approximation: If f (N) is a function on MN(C)dsa and

f ∈ TrP
1
m, we say that f (N)  f if

∀R > 0, lim
N→∞

sup
x∈MN(C)dsa
‖x‖∞≤R

‖f (N)(x)− f (x)‖2 = 0.

This asymptotic approximation relation respects all the operations on the
previous slide. These operations are used to “build” the solutions to some
PDE.

David A. Jekel (UCLA) NC Transport Oct. 1, 2019 18 / 19



Role in the Proof

The transport maps in the theorems above are tuples of functions in this
space, which are in fact Lipschitz in ‖·‖2.

The large-N limit of functions on matrices is captured by the notion of
asymptotic approximation: If f (N) is a function on MN(C)dsa and

f ∈ TrP
1
m, we say that f (N)  f if

∀R > 0, lim
N→∞

sup
x∈MN(C)dsa
‖x‖∞≤R

‖f (N)(x)− f (x)‖2 = 0.

This asymptotic approximation relation respects all the operations on the
previous slide. These operations are used to “build” the solutions to some
PDE.

David A. Jekel (UCLA) NC Transport Oct. 1, 2019 18 / 19



Role in the Proof

The transport maps in the theorems above are tuples of functions in this
space, which are in fact Lipschitz in ‖·‖2.

The large-N limit of functions on matrices is captured by the notion of
asymptotic approximation: If f (N) is a function on MN(C)dsa and

f ∈ TrP
1
m, we say that f (N)  f if

∀R > 0, lim
N→∞

sup
x∈MN(C)dsa
‖x‖∞≤R

‖f (N)(x)− f (x)‖2 = 0.

This asymptotic approximation relation respects all the operations on the
previous slide. These operations are used to “build” the solutions to some
PDE.

David A. Jekel (UCLA) NC Transport Oct. 1, 2019 18 / 19



Thanks to the organizers for allowing me to give a talk!

Thank you for your attention!
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