NONCOMMUTATIVE CHOQUET THEORY

Kenneth R. Davidson

University of Waterloo

BIRS April 2019

joint work with Matthew Kennedy

A map $\varphi: A \to \mathcal{B}(K)$ induces maps $\varphi_n: \mathcal{M}_n(A) \to \mathcal{B}(K^{(n)})$ coordinatewise. Say φ is completely positive if φ_n is positive for $n \ge 1$. If φ is unital and completely positive (u.c.p.), then $\|\varphi\|_{cb} = \sup \|\varphi_n\| = 1$.

A map $\varphi: A \to \mathcal{B}(K)$ induces maps $\varphi_n: \mathcal{M}_n(A) \to \mathcal{B}(K^{(n)})$ coordinatewise. Say φ is completely positive if φ_n is positive for $n \geq 1$. If φ is unital and completely positive (u.c.p.), then $\|\varphi\|_{cb} = \sup \|\varphi_n\| = 1$.

(Arveson 1969) Every u.c.p. map $\varphi:A\to\mathcal{B}(K)$ extends to a u.c.p. map of $\mathrm{C}^*(A)$ into $\mathcal{B}(K)$. (Stinespring 1955) A u.c.p. map φ of a C*-algebra has the form $\varphi(a)=\alpha^*\pi(a)\alpha$ where π is a *-repn. and α is an isometry.

A map $\varphi: A \to \mathcal{B}(K)$ induces maps $\varphi_n: \mathcal{M}_n(A) \to \mathcal{B}(K^{(n)})$ coordinatewise. Say φ is completely positive if φ_n is positive for $n \geq 1$. If φ is unital and completely positive (u.c.p.), then $\|\varphi\|_{cb} = \sup \|\varphi_n\| = 1$.

(Arveson 1969) Every u.c.p. map $\varphi:A\to\mathcal{B}(K)$ extends to a u.c.p. map of $\mathrm{C}^*(A)$ into $\mathcal{B}(K)$. (Stinespring 1955) A u.c.p. map φ of a C*-algebra has the form $\varphi(a)=\alpha^*\pi(a)\alpha$ where π is a *-repn. and α is an isometry.

If π is a representation of $C^*(A)$ such that $\pi|_A$ has a unique u.c.p. extension to $C^*(A)$, say π has the unique extension property. If π is also irreducible, then π is a boundary representation.

Classical:

$$1 \in A = A^* \subset C(X)$$
 function system.

$$K = S(A) = \{f : A \to \mathbb{C} : f \ge 0, \ f(1) = 1\}$$
 state space.

Classical:

$$1 \in A = A^* \subset C(X)$$
 function system.

$$K = S(A) = \{f : A \to \mathbb{C} : f \ge 0, \ f(1) = 1\}$$
 state space.

NC Theory:

$$1 \in A = A^* \subset \mathcal{B}(H)$$
 operator system

$$\Gamma = S(A) = \coprod_{1 \le n \le \kappa} \mathsf{UCP}(A, \mathcal{B}(H_n))$$

where dim $H_n = n$, and $\kappa \ge \aleph_0$ is a cardinal large enough for all cyclic representations of $C^*(A)$.

Classical:

$$1 \in A = A^* \subset C(X)$$
 function system.

$$K = S(A) = \{f : A \to \mathbb{C} : f \ge 0, \ f(1) = 1\}$$
 state space.

NC Theory:

$$1 \in A = A^* \subset \mathcal{B}(H)$$
 operator system

$$\Gamma = S(A) = \coprod_{1 \le n \le \kappa} \mathsf{UCP}(A, \mathcal{B}(H_n))$$

where dim $H_n = n$, and $\kappa \ge \aleph_0$ is a cardinal large enough for all cyclic representations of $C^*(A)$.

$$\mathcal{M} = \coprod_{1 \leq n \leq \kappa} \mathcal{M}_n \quad \text{where } \mathcal{M}_n = \mathcal{B}(H_n).$$

 Γ is nc convex: i.e. closed under direct sums and compressions.

$$x \in \Gamma_n, \ y \in \Gamma_m \implies x \oplus y \in \Gamma_{n+m}$$

 $x \in \Gamma_n, \ \alpha \in \mathcal{M}_{nm} \text{ isometry}, \implies \alpha^* x \alpha \in \Gamma_m.$

 Γ is nc convex: i.e. closed under direct sums and compressions.

$$x \in \Gamma_n, \ y \in \Gamma_m \implies x \oplus y \in \Gamma_{n+m}$$
$$x \in \Gamma_n, \ \alpha \in \mathcal{M}_{nm} \text{ isometry, } \implies \alpha^* x \alpha \in \Gamma_m.$$

Equivalently,

$$x_i \in \Gamma_i, \ \alpha_i \in \mathcal{M}_{n_i,n}, \ \sum_i \alpha_i^* \alpha_i = 1_n \implies \sum_i \alpha_i^* x_i \alpha_i \in \Gamma.$$

 Γ is nc convex: i.e. closed under direct sums and compressions.

$$x \in \Gamma_n, \ y \in \Gamma_m \implies x \oplus y \in \Gamma_{n+m}$$

 $x \in \Gamma_n, \ \alpha \in \mathcal{M}_{nm} \text{ isometry}, \implies \alpha^* x \alpha \in \Gamma_m.$

Equivalently,

$$x_i \in \Gamma_i, \ \alpha_i \in \mathcal{M}_{n_i,n}, \ \sum_i \alpha_i^* \alpha_i = 1_n \implies \sum_i \alpha_i^* x_i \alpha_i \in \Gamma.$$

Each Γ_n is compact in the point-weak-* topology.

 Γ is nc convex: i.e. closed under direct sums and compressions.

$$x \in \Gamma_n, \ y \in \Gamma_m \implies x \oplus y \in \Gamma_{n+m}$$

 $x \in \Gamma_n, \ \alpha \in \mathcal{M}_{nm} \text{ isometry}, \implies \alpha^* x \alpha \in \Gamma_m.$

Equivalently,

$$x_i \in \Gamma_i, \ \alpha_i \in \mathcal{M}_{n_i,n}, \ \sum_i \alpha_i^* \alpha_i = 1_n \implies \sum_i \alpha_i^* x_i \alpha_i \in \Gamma.$$

Each Γ_n is compact in the point-weak-* topology.

Remark: Γ is determined by $\coprod_{n<\infty} \Gamma_n$ but need higher levels.

Classical: A(K) affine functions on K. (Kadison 1951) $A \simeq A(K)$.

Classical: A(K) affine functions on K. (Kadison 1951) $A \simeq A(K)$.

 $\theta:\Gamma\to\Delta$ is no affine if

- $\bullet \ \theta(\Gamma_n) \subset \Delta_n$
- $\theta(\sum \oplus x_i) = \sum \oplus \theta(x_i)$

 $A(\Gamma)$ is the set of continuous nc affine functions $\theta: \Gamma \to \mathcal{M}$.

Classical: A(K) affine functions on K. (Kadison 1951) $A \simeq A(K)$.

 $\theta:\Gamma\to\Delta$ is no affine if

- $\bullet \ \theta(\Gamma_n) \subset \Delta_n$
- $\theta(\sum \oplus x_i) = \sum \oplus \theta(x_i)$

 $A(\Gamma)$ is the set of continuous nc affine functions $\theta: \Gamma \to \mathcal{M}$.

THEOREM

$$A \simeq A(\Gamma)$$
 via $a \to \hat{a}$, $\hat{a}(x) = x(a)$.

nc function: $f: \Gamma \to \mathcal{M}$ is graded, respects \oplus , \mathcal{U} -equivariant:

- $f(\sum \oplus x_i) = \sum \oplus f(x_i)$

nc function: $f: \Gamma \to \mathcal{M}$ is graded, respects \oplus , \mathcal{U} -equivariant:

- $f(\sum \oplus x_i) = \sum \oplus f(x_i)$

 $C(\Gamma)$ continuous nc functions. $B(\Gamma)$ bounded nc functions.

nc function: $f: \Gamma \to \mathcal{M}$ is graded, respects \oplus , \mathcal{U} -equivariant:

- $f(\sum \oplus x_i) = \sum \oplus f(x_i)$
- $f(uxu^*) = uf(x)u^*$ for $x \in \Gamma_n$, $u \in \mathcal{M}_n$ unitary.

 $C(\Gamma)$ continuous nc functions. $B(\Gamma)$ bounded nc functions.

THEOREM (TAKESAKI-BICHTELER 1969)

C*-algebra C, then $C \simeq \mathrm{C}(\mathsf{Rep}(C,H))$ and $C^{**} \simeq \mathrm{B}(\mathsf{Rep}(C,H))$.

nc function: $f: \Gamma \to \mathcal{M}$ is graded, respects \oplus , \mathcal{U} -equivariant:

- $f(\sum \oplus x_i) = \sum \oplus f(x_i)$
- $f(uxu^*) = uf(x)u^*$ for $x \in \Gamma_n$, $u \in \mathcal{M}_n$ unitary.

 $C(\Gamma)$ continuous nc functions. $B(\Gamma)$ bounded nc functions.

THEOREM (TAKESAKI-BICHTELER 1969)

C*-algebra C, then $C \simeq \mathrm{C}(\mathsf{Rep}(C,H))$ and $C^{**} \simeq \mathrm{B}(\mathsf{Rep}(C,H))$.

 $C^*_{\max}(A)$ of Kirchberg-Wassermann 1998: universal C*-algebra s.t. every u.c.p. map $x \in \Gamma$ extends to a *-repn. δ_x of $C^*_{\max}(A)$.

THEOREM

 $C^*_{\mathsf{max}}(A) \simeq C(\Gamma)$.

$$\mu(a) = a(x)$$
 for $a \in A(K)$.

and x is the barycenter of μ .

$$\mu(a) = a(x)$$
 for $a \in A(K)$.

and x is the barycenter of μ .

A representing map for $x \in \Gamma_n$ is $\mu \in UCP(C(\Gamma), \mathcal{M}_n(\mathcal{M}))$ such that $\mu|_{A(\Gamma)} = x$; and x is the barycenter of μ . By Stinespring, $\mu = \alpha^* \delta_y \alpha$ for $y \in \Gamma_m$ and isometry $\alpha \in \mathcal{M}_{mn}$. Say (y, α) represents x and y dilates x.

$$\mu(a) = a(x)$$
 for $a \in A(K)$.

and x is the barycenter of μ .

A representing map for $x \in \Gamma_n$ is $\mu \in UCP(C(\Gamma), \mathcal{M}_n(\mathcal{M}))$ such that $\mu|_{A(\Gamma)} = x$; and x is the barycenter of μ . By Stinespring, $\mu = \alpha^* \delta_y \alpha$ for $y \in \Gamma_m$ and isometry $\alpha \in \mathcal{M}_{mn}$. Say (y, α) represents x and y dilates x.

x has unique representing map iff δ_x is only u.c.p.extension of x. x is maximal if (y, α) represents $x \implies y = x \oplus z$.

$$\mu(a) = a(x)$$
 for $a \in A(K)$.

and x is the barycenter of μ .

A representing map for $x \in \Gamma_n$ is $\mu \in UCP(C(\Gamma), \mathcal{M}_n(\mathcal{M}))$ such that $\mu|_{A(\Gamma)} = x$; and x is the barycenter of μ . By Stinespring, $\mu = \alpha^* \delta_y \alpha$ for $y \in \Gamma_m$ and isometry $\alpha \in \mathcal{M}_{mn}$. Say (y, α) represents x and y dilates x.

x has unique representing map iff δ_x is only u.c.p.extension of x. x is maximal if (y, α) represents $x \implies y = x \oplus z$.

PROPOSITION

x had unique representing map iff x is maximal.

THEOREM (DRITSCHEL-McCullough 2005)

 $x \in \Gamma$ has a maximal dilation y.

Classical: Extreme points ∂K of K.

 $x \in \Gamma$ is pure if $x = \sum \alpha_i^* x_i \alpha_i \implies \alpha_i^* x_i \alpha_i \in \mathbb{R} x$. x is extreme if it is pure and maximal (boundary representations). $nc_ext(\Gamma) := \partial \Gamma$

Classical: Extreme points ∂K of K.

 $x \in \Gamma$ is pure if $x = \sum \alpha_i^* x_i \alpha_i \implies \alpha_i^* x_i \alpha_i \in \mathbb{R} x$. x is extreme if it is pure and maximal (boundary representations). $\mathsf{nc_ext}(\Gamma) := \partial \Gamma$

NC Krein-Milman theorem inspired by Webster-Winkler 1999.

THEOREM

 Γ is the closed nc convex hull of $\partial\Gamma$.

Classical: Extreme points ∂K of K.

 $x \in \Gamma$ is pure if $x = \sum \alpha_i^* x_i \alpha_i \implies \alpha_i^* x_i \alpha_i \in \mathbb{R} x$. x is extreme if it is pure and maximal (boundary representations). $\mathsf{nc_ext}(\Gamma) := \partial \Gamma$

NC Krein-Milman theorem inspired by Webster-Winkler 1999.

THEOREM

 Γ is the closed nc convex hull of $\partial\Gamma$.

Milman converse.

THEOREM

- **①** If X ⊂ Γ closed
- $x \in X_n$ and isometry $\alpha \in \mathcal{M}_{mn}$ implies that $\alpha^* x \alpha \in X$
- **3** and $\overline{\operatorname{ncconv}(X)} = \Gamma$

then $X \supset \partial \Gamma$.

Classical: $f \in C(K)$ convex.

If $f \in C(K)$, the convex (lower) envelope is

$$\check{f} = \sup\{a \in \mathcal{A}(K) : a \le f\} = \bigcap_{a \le f} \mathsf{Epi}(a).$$

Classical: $f \in C(K)$ convex. If $f \in C(K)$, the convex (lower) envelope is

$$\check{f} = \sup\{a \in A(K) : a \le f\} = \bigcap_{a \le f} Epi(a).$$

A multivalued s.a. nc function is upward directed: if $F: \Gamma \to \mathcal{M}_n(\mathcal{M})$, then $F(x) = F(x) + \mathcal{M}_n(\mathcal{M}_p)^+$ for $x \in \Gamma_p$.

Classical: $f \in C(K)$ convex. If $f \in C(K)$, the convex (lower) envelope is

$$\check{f} = \sup\{a \in \mathcal{A}(K) : a \leq f\} = \bigcap_{a \leq f} \mathsf{Epi}(a).$$

A multivalued s.a. nc function is upward directed: if $F: \Gamma \to \mathcal{M}_n(\mathcal{M})$, then $F(x) = F(x) + \mathcal{M}_n(\mathcal{M}_p)^+$ for $x \in \Gamma_p$.

F is nc convex and l.s.c. if $\operatorname{Graph}(F)$ is nc convex and closed. The nc convex envelope of $F:\Gamma\to\mathcal{M}_n(\mathcal{M})$ is defined for $x\in\Gamma_p$ by

$$\overline{F}(x) = \bigcap_{\substack{m \ a < 1_m \otimes F}} \{ \alpha \in (\mathcal{M}_n(\mathcal{M}_p))_{sa} : a(x) \leq 1_m \otimes \alpha \}.$$

 \overline{F} is no convex, l.s.c. and $\overline{F} \leq F$.

 $\underline{\mathsf{Classical:}}\ \check{f}(x) = \inf\nolimits_{\mu \sim x} \mu(f) \text{, and inf is attained}.$

Classical: $\check{f}(x) = \inf_{\mu \sim x} \mu(f)$, and inf is attained.

The following is trivial classically, but difficult here.

THEOREM

If F is convex, then $\overline{F} = F$.

<u>Classical</u>: $\check{f}(x) = \inf_{\mu \sim x} \mu(f)$, and inf is attained.

The following is trivial classically, but difficult here.

THEOREM

If F is convex, then $\overline{F} = F$.

This relates the convex envelope to representing maps.

THEOREM

If $f \in \mathcal{M}_n(\mathrm{C}(\Gamma))$ and $x \in \Gamma_p$,

$$\overline{f}(x) = \bigcup_{\mu \sim x} [\mu(f), \infty).$$

Nc Choquet order: $\mu \prec_c \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.

Nc Choquet order: $\mu \prec_c \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.

Dilation order: $\mu \prec_d \nu$ if

- (x, α) represents μ
- (y,β) represents ν , and

Nc Choquet order: $\mu \prec_c \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.

Dilation order: $\mu \prec_d \nu$ if

- (x, α) represents μ
- (y,β) represents ν , and

This relates the dilation order with convex envelopes.

THEOREM

$$\mu(\overline{f}) = \bigcap_{\mu \prec_d \nu} [\nu(f), \infty).$$

Nc Choquet order: $\mu \prec_c \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.

Dilation order: $\mu \prec_d \nu$ if

- (x, α) represents μ
- (y, β) represents ν , and
- \exists_{γ} s.t. $x = \gamma^* y \gamma$ and $\beta = \gamma \alpha$.

This relates the dilation order with convex envelopes.

THEOREM

$$\mu(\overline{f}) = \bigcap_{\mu \prec_d \nu} [\nu(f), \infty).$$

This is crucial.

THEOREM

 $\mu \prec_{c} \nu$ if and only if $\mu \prec_{d} \nu$.

<u>Classical</u>: (Choquet 1956) If K is metrizable, each $x \in K$ has a representing measure supported on ∂K .

(Bishop-de Leeuw 1959) Every $x \in K$ has a representing measure pseudo-supported on ∂K , i.e. $\mu(f) = 0$ if f is a Baire function with $f|_{\partial K} = 0$.

<u>Classical</u>: (Choquet 1956) If K is metrizable, each $x \in K$ has a representing measure supported on ∂K .

(Bishop-de Leeuw 1959) Every $x \in K$ has a representing measure pseudo-supported on ∂K , i.e. $\mu(f) = 0$ if f is a Baire function with $f|_{\partial K} = 0$.

The Baire-Pedersen algebra $\mathfrak{B}(\Gamma)$ is the monotone completion of $\mathrm{C}(\Gamma)$ in $\mathrm{B}(\Gamma)$.

THEOREM (NC BISHOP-DE LEEUW)

If $x \in \Gamma$, then there is a dilation maximal μ representing x. If $f \in \mathfrak{B}(\Gamma)$ with $f|_{\partial \gamma} = 0$, then $\mu(f) = 0$. <u>Classical</u>: (Choquet 1956) If K is metrizable, each $x \in K$ has a representing measure supported on ∂K .

(Bishop-de Leeuw 1959) Every $x \in K$ has a representing measure pseudo-supported on ∂K , i.e. $\mu(f)=0$ if f is a Baire function with $f|_{\partial K}=0$.

The Baire-Pedersen algebra $\mathfrak{B}(\Gamma)$ is the monotone completion of $\mathrm{C}(\Gamma)$ in $\mathrm{B}(\Gamma)$.

THEOREM (NC BISHOP-DE LEEUW)

If $x \in \Gamma$, then there is a dilation maximal μ representing x. If $f \in \mathfrak{B}(\Gamma)$ with $f|_{\partial \gamma} = 0$, then $\mu(f) = 0$.

THEOREM (NC CHOQUET)

If A is separable and $x \in \Gamma$, there is an nc probability measure on $\partial \Gamma$ that represents x.

The end.