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Beurling theorem (Acta Math., 1949)

eD:={zeC: |z] <1}

@ H?(D) is the Hardy space of all analytic functions on D with
square-summable coefficients.

@ Sis the unilateral shift defined by (Sy)(z) := zf(2).

Classification of the invariant subspaces of S :

Any invariant subspace M c H?(D) of S is of the form

M = 0H3(D),

where 0 is an inner function.
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Beurling theorem (Acta Math., 1949)

@ A subspace £ c H?(D) is called wandering subspace of S
if £ 1L S"Cforanyn=1,2,....

@ An equivalent form of Beurling result :

If {0} # M C H?(D) is an invariant subspace of S, then
W .= M & SM is a one dimensional wandering subspace
spanned by an inner function 6, and

M =span{S"W: n=0,1,...}.

@ Therefore, the invariant subspaces of S are in one-to-one
correspondence with the wandering subspaces of S.
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Beuling-Lax-Halmos theorem (Acta Math, Crelle)

Theorem

A non-trivial closed subspace M of the vector-valued Hardy
space H?(D) ® & is invariant under S ® I if and only if there is
a Hilbert space G and an isometric analytic operator

Ms : H3(D)® G — H*(D) ® &, i.e.

Mo(S® Ig) = (S® Ig)Me,

such that M = Mg(H?(D) ® G). Moreover, the wandering
subspace
Wi =MoczM

admits the representation WW = Mg(G) and

M =span{(S"@ Is)W: n=0,1,...}.
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Universal model operator

@ The unilateral shift plays the role of universal contraction
on a Hilbert space.

Any pure contraction T € B(H), i.e. |T|| <1 and T*" — 0
strongly, as n — oo, has its adjoint unitarily equivalent to
(S* ® Ig)|xr, where N is a co-invariant subspace of S ® Is.

@ This result led to the Sz.-Nagy-Foias model theory for
arbitrary completely non-unitary contractions on Hilbert
spaces in terms of the associated characteristic functions.
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Generalizations : single variable case

@ Shift-invariant subspaces and their wandering subspaces
for other classical Hilbert spaces of analytic functions on D.

@ Richter (Crelle) for the Dirichlet space.

@ Aleman, Richter, Sundberg (Acta Math.) for the Bergman
space.

@ Shimorin (Crelle) for left invertible operators satisfying
some suitable operator inequalities.

@ Olofsson, Ball and Bolotnikov, and Sarkar for the weighted
Bergman space.
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Generalizations : multivariable commutative case

@ Shift-invariant subspaces and their wandering subspaces
for Hilbert spaces of analytic functions on the unit ball B, of
Ccn.

@ McCullough and Trent (2000) for the Drurry-Arveson
space. This also follows also from the
Beurling-Lax-Halmos type theorem for the left creation
operators (Popescu, 1989) and the noncommutative
commutant lifting theorem (Popescu, 1992).

@ Eschmeier, Sarkar for the Bergman space and weighted
Bergman space over the unit ball Bj,.

@ Bhattacharjee, Eschmeier, Keshari, and Sarkar for a class
of reproducing kernel Hilbert spaces on Bj,.
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Generalizations : multivariable noncommutative case

@ Let H, be a complex Hilbert space with orthonormal basis
e1, €, ..., en. The full Fock space of Hj, defined by

F2(Hn) == D HY,
k>0

where HZ? .= C1.
@ The left creation operators S; : F?(H,) — F2(Hp) are
defined by

Sip =6 ® ¢, ¢ € F2(Hp).

@ (Sy,...,Sp) plays the role of universal model for row
contractions :

{T=(Ty,....,Tp)) e B(H)": ThHT{ +---+ ToT; < I}.
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Generalizations : multivariable noncommutative case

@ A Beurling-Lax-Halmos type theorem for the left creation
operators was obtained in 1989 (Popescu).

@ Universal model for pure row contractions (Popescu, 1989).

Theorem

IfT =(Ty,..., Ty) is a pure row contraction, then its
characteristic function ©1 : F?(H,) ® D7+ — F?(H,) ® Dt is an
isometric multi-analytic operator, i.e

o7(Si®Ip;.) = (Si® Ip;)Or,
and
Ti* = ('S;k ® /DT)’Mlﬂ
where M = @T(F2(Hn) ®DT*)-




Noncommutative domains, universal models
Noncommutative domains, varieties Noncommutative varieties, universal models
Remarkable particular cases

Our goals

@ Let I} be the unital free semigroup on n generators
g1, ---,9n and the identity go.

o lfa=g, g, €F}Hand X :=(Xi,...,X,) € B(H)", we
denote X, := X, --- X, and Xy, := k.

@ Let Z,...,Z, be noncommutative indeterminates. A formal

power series f := Zaemﬁ anZ,, a, € C, is called free
holomorphic function on the noncommutative ball

[B(H)"p = {(T1,.... Tn) € B(H)": | 1T+ + T T3l < o7},

if the series 372 -k @aXa is convergent in the
operator norm topology for any (X, ..., Xn) € [B(H)",,
and any H.

@ fis called positive regular free holomorphic function if
a, >0forany a € Fj, ag, =0, and ag, > 0ifi=1,...,n.
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Our goals

Noncommutative domains

@ We define the noncommutative regular domain Df"(H),
m=1,2,...,tobethesetofall X :=(Xj,...,X,) € B(H)"
such that

(id — ¢ x) (/) > 0for1 < k < m,
where ®; x : B(H) — B(#) is defined by
O x(Y) =D anXaYX:, Y€ B(H)
|| >1
and the convergence is in the weak operator topology.
o Define b := 1 and

|

[+ m—1 :
b(m)_z Z a%"'a“ﬁ<jm_1 > if o] >1.

VT

> >
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Universal model

o Let D' : F2(H,) — F2(Hy), i€ {1,...,n}, be the
diagonal operators defined by setting

b"
D’(m)ea = Wea, o € F;t,
gia

where {€,},cp: is the orthonormal basis of F2(Hp).

o The n-tuple (W™, ..., Wi™) of weighted shifts,

W™ .— 5,0 associated with the noncommutative

domain D", plays the role of universal model for the pure
elements of Df" (Popescu, Mem. AMS, 2010, JFA, 2008).
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Our goals

Noncommutative varieties V7, (H)

@ LetQ Cc C(Z,...,Z,) be afixed set of noncommutative
polynomials such that g(0) = 0 forany q € Q

@ Define the noncommutative variety V{7, (#), to be the set

{(Xi,....Xn) €D"(H) : g(Xi,....,Xn) =0 forany qge Q}.

o The universal model (B/™, ..., B{™) associated with
Vio(H) is given by

Blgm)* _ M/i(m)*|N,’f’Q’ 1=1,...,n,

acting on a model space /\/’f’"Q C F?(H,) which is a joint
S
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Our goals

Single variable case : n=1and 9 =0

@ If m=1and p = Z, the corresponding domain DJ'(H)
coincides with

[B(H)]1 :={X € B(H) - [[X]| <1}.

In this case, the universal model is the unilateral shift S
acting on the Hardy space H?(DD).

@ If m>2and p = Z, the corresponding domain coincides
with the set of all m-hypercontractions studied by Agler,
Olofsson, Ball-Bolotnikov. The corresponding universal
model is the unilateral shift acting on the weighted
Bergman space, which is a reproducing kernel Hilbert
space corresponding to the kernel kn(z, w) = W

z,weD.
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Multivariable commutative case : n > 2

Case:Q:={Z2Z—-22,i,j=1,...,n}

elfm>1andp=2 +---+ Z, the corresponding
commutative variety was studied by Drurry, Arveson,
Bhattacharyya-Eschmeier-Sarkar, Popescu (when m = 1),
and Athavale, Miller, Miler-Vasilescu, and
Curto-Vasilescu (when m > 2).
The corresponding universal model is the n-tuple
(M, , ..., M;,) of multipliers by the coordinate functions,
acting on the reproducing kernel Hilbert space
corresponding to the kernel

1

km(z,w) = , zZ,we B,

on the unit ball of C".
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Our goals

Multivariable commutative case : n > 2

Case:Q:={Z2Z—-22,i,j=1,...,n}

@ When m > 1 and p is a positive regular commutative
polynomial, the commutative variety Vo (K) was studied
by S. Pott . In this case, the universal model (M, , ..., M,)
acts on a reproducing kernel Hilbert space of holomorphic
functions on a Reinhardt domain in C" uniquely
determined by p.
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Our goals

Multivariable noncommutative case

Case:n>2and Q=0

@ Whenm=1,p=2; +--- + Z,, the noncommutative
domain Dg'(H) coincides with the closed unit ball [B(#)"],
the study of which has generated a free analogue of
Sz.-Nagy-Foias theory. The corresponding universal model
is the n-tuple of left creation operators (S;, ..., Sp).

@ When m> 1, n> 1, and f is any positive regular free
holomorphic function the domain D{"(#) was studied by
Popescu (Mem. AMS, 2010 and JFA 2008). In this case,
the corresponding universal model is the n-tuple of
weighted left creation operators (W1(’"), ..., W) acting
on the full Fock space.
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Our goals

Multivariable noncommutative case

Case:n>2, meN,and Q Cc C(Z,...,Z,)

@ The study of general noncommutative varieties V{5 (#) in
B(#)", where m > 1, f is a positive regular free
holomorphic function, and Q ¢ C(Z;,...,Z,) is any set of
noncommutative polynomials such that g(0) = 0 for any
g € Q, was initiated in 2006 (m =1, =2y + --- + Z,).

e G. PoPEscu, Operator theory on noncommutative varieties,
Indiana Univ. Math. J. 56 (2006), 389-442.

e G. PorEscu, Noncommutative Berezin transforms and
multivariable operator model theory, J. Funct. Anal. 254 (2008),
no. 4, 1003—1057 (no characteristic functions).

e G. PoPESscu, Operator theory on noncommutative domains,
Mem. Amer. Math. Soc. 205 (2010), no. 964, vi+124 pp. Case
(m=1).
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Our goals

Our goals

Case:n>2, meN,and Q Cc C(Z,...,Z,)

@ To provide a Beurling type characterization of the joint
invariant subspaces under the universal model
(B ..., B{™), when m > 2, and to parameterize the
corresponding wandering subspaces.

@ To characterize the elements in the noncommutative
variety Vi, (#) which admit characteristic functions,
develop an operator model theory for the completely
non-coisometric elements, and prove that the
characteristic function is a complete unitary invariant for
this class of elements.
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Our goals

All our the results hold in the commutative case :
n>2meN,and Q={ZZ - ZZ: i,je{1,...,n}}

@ In this case, the universal model is (M,, ..., M,) acting on
the reproducing kernel Hilbert space with kernel
kt,m : D ,(C) x D} (C) — C defined by
1
Kot m(t, A) = —— forall A\, €D} ,(C),
(1 - Z|a|21 Ao flara

where

DI (C) =S A=(A1,..., M) €C": > an| Al < 1

la[>1
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Parametrization of wandering subspaces

Noncommutative Berezin kernel

@ Let T:=(Ty,...,Ty) € DJ(H) and let
K\? - H — F?(Hn) ® Ar m 7(H) be the map defined by

m)h S VbPen @ ArmrTih,  heH,

ozEIFJr
mpn11/2
where A¢ 1 := [(I— ®¢7)™(1)] '* and

O r(Y) =) aT. YT, YeBH)

|| >1
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Joint invariant subspaces : )
Parametrization of wandering subspaces

Noncommutative Berezin kernel

Definition
The constrained noncommutative Berezin kernel associated
with the n-tuple T € V', (#) is the bounded operator

K™ 2 H = Ny © By 7 () defined by

(m) . _ / (m)
Kit.o = (Pym, @ iR —an)Kir's

where Kf('?) is the Berezin kernel associated with T € D{(H)

and N7, C F2(Hp) is the model space on which the universal

model (B, ..., B{™) is acting.
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Joint invariant subspaces ) : )
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Noncommutative Berezin kernel

Main properties :

o KD, Tr =(B™ @ NKDy,  i€{l,....n}.

@ When T is a pure n-tuple, i.e. cb’;j(/) — 0, as k — oo, the

constrained noncommutative Berezin kernel Kf( T)Q is an
isometry.
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Beurling type factorization result

@ Beurling type factorization result

Theorem

Let X = (Xi,..., Xn) be a pure n-tuple of operators in V{’,(K)
and let Y € B(K) be a self-adjoint operator. Then the following
Statements are equivalent :

(i) There is a Hilbert space € and W : N} , ® € — K such that

y=wv* and wBVel)=Xv, ic{l,...n}

where (B\"), ..., B{") is the universal model of Vg
(i) ®rx(Y)<Y.
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Beurling-Lax-Halmos type representation

Theorem

Let X = (Xi,...,Xn) be a pure n-tuple of operators in the
noncommutative variety V,TQ(IC). The following statements are
equivalent.

(i) M C K is a joint invariant subspace under X, ..., Xp.

(i) There is a Hilbert space £ and a partial isometry

V: N o ®E& — K such that
M=V (Moee) and wBYalk)=Xv,

where (BS”, ce B,(71)) is the universal model of the variety
Vg
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Beurling-Lax-Halmos type representation

Theorem

Let (B™, ..., BY™) be the universal model of the

noncommutative variety V;"Q, acting on the model space N’ ,TQ.
The following statements are equivalent.

(i) M C NfTy ® K is a joint invariant subspace under
B & I,...,Bi" & I.

(iiy There is a Hilbert space £ and a partial isometry
VMo ®E = Ny ® K such that

M=V (Mowe) and wBelk)=(B" e k)w.
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Beurling-Lax-Halmos type representation

A bounded operator M : N, ,1 o ® & — N, ® & satisfies the
relation

MBIV @ le)=(B™ @I, )M,  ie{1,...,n},

if and only if there is  : F2(H,) ® & — F2(Hp) ® & satisfying
the relation

oWV e ) = (W™ el,)e,  ie{l,... n},

and such that

M = PNfTQ¢|Nf1,Q‘
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Noncommutative Berezin kernel
Beurling-Lax-Halmos type representation
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Uniqueness of representation

@ Fix an n-tuple Y := (Y3,..., Yn) € B(K)". A bounded linear
operator M : N, @ # — K is called multi-analytic with

respectto B := (B{"), ... B{yand Y := (V5,..., V,) if
MBY @ h)=YiM,  ie{1,...,n}.
@ The support of M, supp M, is the smallest reducing

subspace N under Bﬁ” ® IH,...,B,(,” ® |y such that
M|p. = 0.
@ We have
suppM = \/ (B) & hy)(M*(K)) =N/ o @G, where

a€F}
G := (P @ he) (M*(K)), and MM* = (Miqupp 1) (Mlsupp )"




Noncommutative Berezin kernel
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Uniqueness of representation

Corollary

Let (Xi,...,Xn) be a pure n-tuple in the noncommutative
variety V{f’Q(IC). The Beurling-Lax-Halmos type representation
for the joint invariant subspace under Xy, . .., X, is essentially
unique. More precisely, if

Wy (./\/?,Q (%9 51) =V, (./V’,J’Q ®52) ,
where V; : N, @ & — K, j = 1,2, are partially isometric

multi-analytic operators, then there is a partial isometry
V:& — & suchthatVy = WQ(IN;Q ® V). In particular,

V1 |suppw, coincides with Vs |sop v, -
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Noncommutative Berezin kernel
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Wandering subspaces

@ Let X = (Xji,..., Xy) be an n-tuple of operators on a
Hilbert space #. A closed subspace W C H is called
wandering subspace for X if

W L X, (W), a€Fl ol >1.
If, in addition,
"=\ X.0») (closed linear span),
acFf

we say that W is a generating wandering subspace for X.
@ If W is a generating wandering subspace for X, then

WZH@EH:X,-(%),

i=1

which shows that WV is uniguely determined by X.
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Wandering subspaces

Let X = (X1,...,Xn) € B(H)" and let® : N ;@ & — H be a
partial isometry such that @(B,m ®lg)=X©,ie{1,...,n},
where (Bﬁ”, ..., B is the universal model of V,J’Q. Then
() the closed subspace M := © (/\/ f1 Q®¢& ) is invariant under
X1 gy Xn.

(i) W= M > Xi(M) is the wandering subspace for
X‘||M7,Xn|M
(i) W=0(L), where L := (range ©®*) N E.

(V) Vaers Xa(W) = © (/\/ga ® c).
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Wandering subspaces

o Let X =(Xi,...,Xn) € B(H)"and let W : N} ® € — H be
a bounded operator such that

vBY @) =Xw, ie{1,....n}

We say that W is (B("), X)-quasi-innerif |W(1 @ x)| = |||
forall x € £ and

VIRELX,(V1®E)), acFh ol >1.

@ V is uniquely determined by its restriction V|¢ : &€ — H,
which can be seen as the symbol of V.
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Joint invariant subspaces A )
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Wandering subspaces

Let X = (Xi,...,Xn) be a pure element in V', (H) and let
Y & — H be an isometry such that

(&) L Xa(w(E)), aeFi |al>1.

Then 1) has a unique extension to a bounded operator
VN ®E — H such that

VBN ) =XV, ie{l,...,n}.

Moreover, V s a contraction.
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Joint invariant subspaces A )
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Wandering subspaces

Let X = (Xi,...,Xn) be a pure element in V{'o(#H) and let
M:=06 <Nf1 Q® 5) be a joint invariant subspace for
Xi,...,Xn, where © : Nf1Q ® & — H is a partially isometric
multi-analytic operator with respect to B(") and X. If
L:=E&Nrange©®* and V := @|Nf1,0®£ :./\/',170 ® L — H, then

(i) Vis a (B, X)-quasi-inner multi-analytic operator.

(i) The wandering subspace W := M & Y"7_, X;(M) of the

n-tuple (Xi|am, - - -, Xn|m) satisfies the relation VW = W(L).

(iiiy The wandering subspace VV is generating for
(Xila; - -+ Xnlaa) if and only if range ©* L N} o @ L.
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Operator model theory

Minimal dilations, uniqueness
Characteristic functions and operator models Extensions, open questions

Characteristic functions

Definition

An n-tuple T :=(Ty,..., Ty) € V/5(H) is said to have
constrained characteristic function if there is a Hilbert space &£
and a multi-analytic operator ¥ : N}, @ & — N, @ Df'y, i.e.

W(Bf1)®/g):(B,§m)®IDTT)W, ie{1,...,n},
such that - )
m m *
Ko (Kf,T,Q) + V=1,

where Kf( T)Q is the constrained noncommutative Berezin kernel

of T e Vih(H)and D'y := Asm r(1)(H).
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Characteristic functions

Proposition

Ann-tuple T := (Ty,..., Tn) € V{5(H) admits a constrained
characteristic function if and only if the defect operator

= K}?Q (K,“PQ)* is a solution of the inequation

¢f7B(m)®/quT(Y) < Y, Y e B(Nfcng X D'C?T)’

where B™ @ Ipp = (B{™ @ Ipp. ..., BY" @ Ipp. ) and KD,
is the constramed Berezin kernel of the n-tuple T

GELU PoPEscU Invariant subspaces and operator model theory on noncommutati



Characteristic functions
Operator model theory

Minimal dilations, uniqueness
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Operator model theory

® Any pure n-tuple T := (Ty,..., Tn) € V[, (H) admits a
constrained characteristic function.

@ Ifm=1,any ntuple T V}’Q(H) admits characteristic
function.

@ Wesay that T := (Ty,..., Tp) € DP’(H) is completely
non-coisometric if there is no nonzero vector h € ‘H such
that <(id — oK) (h)h, h> — 0forany k € .

@ We can develop an operator model theory for the
completely non-coisometric elements in the
noncommutative variety V", (#) which admit characteristic
functions and prove that the characteristic function is a
complete unitary invariant for this class of elements.
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Characteristic functions and operator models Extensions, open questions

Operator model theory

@ Particular case : pure elements in V{,(H)

Theorem

LetT =(Ty,...,Tn) be an element in V{',(H). Then T is pure
if and only if the constrained character/st/c function ©¢ 1 o is a
partially isometric multi-analytic operator. Moreover, in this case
T is unitarily equivalent to G = (Gy, . .., Gn), where

G/ = PHfTQ (B( )®/'D> ‘Hf'[‘g?

D := At m7(I)(H), and Py, ; , Is the orthogonal projection of
./\/—anQ & D onto Hf}Tvg = (N;?Q ® D) © range @f,T’Q.
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Operator model theory

@ We say that two multi-analytic operators
F: N,JQ QK1 — NfTQ ® Ko and
F': N o @ Ky = Nffy @ Ky coincide if there are two
unitary operators 7; € B(IC-,IC]’-),j = 1,2, such that

F/(IN)J,Q ®T1) = (IN’me ® 1) F.

Theorem

Let T :=(T,.... Tn) € V/o(H) and

T :=(T},..., Tp) € V{\,(#H') be two completely
non-coisometric n-tuples which admit characteristic functions.
Then T and T’ are unitarily equivalent if and only if their
characteristic functions © r o and ©¢ 1+ o coincide.
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Minimal dilations, uniqueness

@ If £ is an arbitrary Hilbert space, we say that
(B1®lg,...,By® Ig) is adilation of (Ty,...,Tp) € VﬁQ(H)
if there is an isometry V : H — N,{"Q ® & such that

=B™ @)V, ie{l,...n}

i

VT

1
If, in addition,
Nipoe="\/ (B & lg)V(H),

acFf

then the dilation is called minimal. We say that Vy" o has
unique minimal dilation if each pure element in Vf Q(’H)
has a unique minimal dilation up to an |somorph|sm
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Minimal dilations, uniqueness

Let g be a positive regular noncommutative polynomial such

that ()
lim 051 —@ =0
i \Bgm )

for any i,p € {1,...,n}. Then any pure n-tuple T € DJ(#) has
a unique minimal dilation up to an isomorphism.

@ The noncommutative m-hyperball D"'(#) (which
corresponds to q = Z; + - - - + Zp) has the unique minimal
dilation property. In this case, by,” = 1 and
plm _ <|a|+"”‘1> if acFh jof > 1.

m—1
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Wandering subspaces

@ If M is an arbitrary joint invariant subspace under
B{ @ Ig,...,BY" @ Iy and the variety Vo () has the
unique minimal dilation property, we can provide an explicit
description of the wandering subspace

n
wi=Mo Y (B lg)M
i=1
and obtain a characterization of the quasi-inner
multi-analytic operators from © : N,J’Q ® Gy — ,’f’Q ®g,i.e.
©|g, is an isometry and

0(G.) L (B, ®15)0(G.), acF |af>1,

where F}! is the free semigroup with n generators.
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Noncommutative m-hyperball D™ (H)

Theorem

Let Wm — (W™ . W{™) be the universal model of D™(H).
Then : G. — F?(Hp) ® G is an (WM, W{M)-quasi-inner
operator if and only if there exist a Hilbert space H, a pure
element T in D™(#H), and a matrix operator

<2 g) ' H @ G. — H" © G such that its entries satisfy
some natural conditions and such that ) is equal to

m n k
(/@ D+(I®C)Y. (l—zl\,@ TF‘) Al E)) 6.
i=1

k=1

where N := [Ny @ hy--- Ny @ hy].
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Noncommutative m-hyperball D™(H)

@ This extends to our noncommutative setting the
corresponding result obtained by Olofsson (when n= 1)
and by Eschmeier in the multivariable commutative case.
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Polydomains and varieties

@ Let B(H)™ x¢--- x¢ B(H)" be the set of all tuples
X:=(Xq,...,Xg)in B(H)™ x --- x B(H)"™ with the
property that the entries of Xs := (Xs,1,..., Xs n,) are
commuting with the entries of X; := (X 1,..., Xt ) for any
s,te{l,...,k},s#t

e Letf=(f,..., ) be positive regular free holomorphic
functions, m := (my,...,my), n:=(MN,...,nk). The
regular polydomain D" () is the set of all k-tuples
X=(X1,...,Xk) € B(H)™ x¢ - x¢ B(H)"™ such that

A?,x(/) >0 for 0<p<m, p:=(pi,...,px) €NF
where
Aﬁx = (Id o (Df1 X4 )m1 ©---0 (Id - q)fk,Xk)mk
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Polydomains and varieties

@ Foreachic {1,...,k}, letZ :=(Z1,...,2Zi ) be an
n;-tuple of noncommutative indeterminates and assume
that, forany t,s € {1,...,k}, s # t, the entries of Z; are
commuting with the entries if Z.

@ We study noncommutative varieties in the polydomain
D{"(#), given by

Vio(H) .= {X e D"(H): g(X) =0forall g e Q},

where Q is a set of polynomials in noncommutative
indeterminates Z; ;, which generates a nontrivial ideal in
Clz,].
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Polydomains and varieties

@ Let Q; C C(Z) be a set of noncommutative polynomials
such that g(0) = 0 for any g € Q;, and set
Q: —Uk 1Q1 C (C< i,j>-

o Let {B(m)} be the universal model of the noncommutative
variety Vf o acting on the appropriate model space fQ

@ Foreachie {1,... k}, let( ,(1),...,8,(1”2) be the universal
model of the variety Vf,- o) acting on the model space Nle,-'
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Polydomains and varieties

@ We can obtain a Beurling-Lax-Halmos type
characterization for the joint invariant subspaces

M C {“Q ® K under the operators B,(.;‘) ® Ic.

Theorem

M is an invariant subspace under the operators B,(-T) ® I if
and only if there are Hilbert spaces &; and partial isometries
¥ N o, ® & = My ® K such that M = ¢i(N{ o ® &) and

vi(B) @ Ig) = (BT @ Iy
foranyie {1,... k},j€{1,...,n;}. Therefore, we have

_ * _ *
Pum =197 = -+ = Yytfi.
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Polydomains and varieties

o If T € Viy(H) is pure, then we can find multi-analytic
operators 0; : Nle,- ® & — N @ Dfy such that

Kf(té( f(;né) +yi; =1, ie{l,... k},

where D}“T is an appropriate defect space associated with
T and Kf(t é is the corresponding Berezin kernel.

@ The k-tuple ©1 := (04, ..., 0k) can be viewed as a
characteristic function of T.

@ As in the case of the regular domains, ©t can be defined
for a larger class of tuples in V{, (#) (namely, the
completely non-coisometric elements).
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Polydomains and varieties

OPEN PROBLEM

@ It remains to be seen if ©1 can be used to provide an
operator model that enjoys properties similar to those from
the classical case or the regular domains.
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THANK YOU
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