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Spectrum

B: a unital Banach algebra over C with unit /, a € B.

spectrum o(a) = {z € C: a— z/ not invertible in B.}

» Conventional point of view: o(a) is a reflects a.

» A different point of view: o(a) is a reflects how a and /
interact.
> linear pencil : A1 — AAo;

» multiparameter pencil: A(z) = z1A1 + 22A2 + - - - + Z,Ap;
(algebraic geometry, differential equations, group theory, math
physics, etc.)



Joint spectra
A1, As, ..., A, elements in B.

Problem. How to define a joint spectrum for these elements?

Preferred properties:

1. Reflects joint behavior of the elements.

2. Reflects interaction of the elements.

3. Reflects algebraic properties of the elements, if any.
4. Computable in many examples.

Known joint spectra:

» 70s, Taylor's spectrum for commuting operators: invertibility
of (A1 — A1l, A2 — Mol ..., Ay — Anl) through the exactness of
Koszul complex.

» 70s, Harte spectrum: invertibility of > Bx(Ax — Ak!).

» 80s, HcIntosh-Pryde spectrum: invertibility of >_(Ax — /)2



Projective spectrum

Let A(z) = z1A1 + A2 + - - - + Z,An.

Projective joint spectrum:

P(A) = {z € C": A(z) is not invertible in B.}

p(A) = {z= [z, 22, ..., za] €EP"1: A(2) is not invertible in B.}

Projective resolvent sets: P°(A) in C", p€(A) in P 1,



Projective spectrum

Let A(z) = z1A1 + A2 + - - - + Z,An.

Projective joint spectrum:

P(A) = {z € C": A(z) is not invertible in B.}

p(A) = {z= [z, 22, ..., za] €EP"1: A(2) is not invertible in B.}

Projective resolvent sets: P°(A) in C", p€(A) in P 1,

Features:
1. symmetry: A1, ..., A, are treated equally.
2. base-free: parameter is assigned to each A;. "I can help but |

am not central”.
3. generality: applicable to noncommuting operators.
4. computability: easy to compute in many examples.



Examples

» 1. Let B= MQ((C), Ao =1and Ay = io1, Ay = iop, A3 = ios,
where o} are the Pauli matrices, i.e.,

0 1 0 —i 1 0
=) =0 0) = 5)

Then su(2) = span{Ai, Az, As}. And
p(A) ={zeP3: 22+ 22+ 22 + z2 = 0} is a compact
algebraic manifold.



Examples

» 1. Let B= MQ((C), Ao =1and Ay = io1, Ay = iop, A3 = ios,
where o} are the Pauli matrices, i.e.,

0 1 0 —i 1 0
=) =0 0) = 5)

Then su(2) = span{Ai, Az, As}. And
p(A) ={zeP3: 22+ 22+ 22 + z2 = 0} is a compact
algebraic manifold.

» 2 [Bannon, Cade, Y., 2013]. Free group F, with generators

{g1,82, -+ ,8n}, and let X be the regular representation of F,
on 2(F,). Set A(z) = z1\(g1) + - - - + z,A\(gn)), then

where RJ = {Z eCn: 2’ZJ’2 < HZH2}7J = 1727 TR LY



» 3 [He, Wang, Y., 2017]. The Cuntz algebra O, is the universal
C*-algebra generated by n isometries 51,55, ..., S, satisfying

> SiS;=1 and S;S; =06yl forl1<ij<n.
i=1

Let S(z) = z151 + -+ - z,Sp and S5.(z) = 1 + S(z). Then it is
shown in that

(a) P(S) =C".

(b) P(Ss) is equal to the unit ball B, = {z € C": ||z|| < 1}.



» 3 [He, Wang, Y., 2017]. The Cuntz algebra O, is the universal
C*-algebra generated by n isometries 51,55, ..., S, satisfying

> SiS;=1 and S;S; =06yl forl1<ij<n.
i=1

Let S(z) = z151 + -+ - z,Sp and S5.(z) = 1 + S(z). Then it is

shown in that

(a) P(S) =C".

(b) P(Ss) is equal to the unit ball B, = {z € C": ||z|| < 1}.
> 4 [Stessin, Y., Zhu, 2011; He, Wang, Y., 2017]. If

Ai(z) =14+ z21A1 + - - - + 2z, A, where A; are compact

operators on a Hilbert space, then

(i) P(A,) is a thin set.

(ii) When P(A,) is smooth, then Exa =\ ,cp(a,) Ker A(z) is

a holomorphic line bundle (kernel bundle) over P(A,).
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Finitely generated groups

G=<g1,8, .8 | > p:G— U(H) a unitary
representation.
Set Ay(z) = zol + z1p(g1) + - - - + znp(gn)-

Example: If 15 : G — 1 is the trivial representation, then

P(AlG):{Zo+Zl—|—---—|-Zn:0} = H.

Theorem (Y.)

Let Ag : G — (?(G) be the left regular representation. Then G is
amenable if and only if P(Ay) contains the hyperplane H;.

Proposition

If p and 7w are weakly equivalent unitary representations, then
P(A,) = P(Ax).

Problem: Does the converse hold for irreducible representations?



Infinite dihedral group D, =< a,t | > =t>=1>
For a fixed 6 € [0, 27), consider two-dimensional representation py
given by
0 e 01
wia =% G| m=13 g

Known: every irreducible repr. of Dy is either one dimensional or
two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D is of the form py for
some 6 € (0, 7).
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Infinite dihedral group D, =< a,t | > =t>=1>
For a fixed 6 € [0, 27), consider two-dimensional representation py

given by
0 e 01
wia =% G| m=13 g
Known: every irreducible repr. of Dy is either one dimensional or

two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D is of the form py for
some 6 € (0, 7).

Fact: P(A,,) ={z€C3: 2§ —z} — 23 —2z1zocos6 = 0}

Theorem (Grigorchuk, Y., 2017)
If \: Doo — U(I?(Dwo)) is the left regular representation, then

U P(4,)

0<6<2r



Proof

The left regular representation of D, is equivalent to the following
representation A of Dy, on L?(T, %) @® L(T dj):

' 27

O e A e L

where T is the bilateral shift operator L%(T), i.e.,
27

Tf(e?) = ef(e?). If we let T = / e?dE(e™). Then
0
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Let S ={g1,...,gn} be a symmetric generating set of group G.
Word length: |x| = min{k|x = xixo--- x, x; € S}, |e] =0.
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Group of intermediate growth
Let S ={g1,...,gn} be a symmetric generating set of group G.
Word length: |x| = min{k|x = xixo--- x, x; € S}, |e] =0.
Set B,(G) ={x € G||x| <r}, r>0.

» G has polynomial growth if |B,| < ar® for some fixed

a, B >0.

» G has exponential growth if |B,| > af" for some fixed
a>0,08>1.

» Milnor’s question (60s): Is there a group of intermediate
growth.

Grigorchuk (80, 84): Yes! G =< a, b, c,d >, where
a=b=c?=d>=bcd=1
oc¥((ad)*) = o*((adacac)) =1, k=0, 1, 2, ---,

where 0 : a— aca, b — d, ¢ — b, d — c is a substitution.
(eV" < |(B(G)| < €29).



Theorem (Grigorchuk, Y., 2017)

Let p: G — L%(T) be the Koopman repr., where T is the rooted

binary tree, and let M = % (p(a) + p(b) + p(c) + p(d)) be the
Markov operator of G. Then o(M) = [—3,0] U[4,1].



Theorem (Grigorchuk, Y., 2017)

Let p: G — L%(T) be the Koopman repr., where T is the rooted
binary tree, and let M = % (p(a) + p(b) + p(c) + p(d)) be the
Markov operator of G. Then o(M) = [—3,0] U[4,1].

Pf.
1. Set u = 2F<t9=L ¢ C[G] and observe u? = 1.
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Theorem (Grigorchuk, Y., 2017)

Let p: G — L%(T) be the Koopman repr., where T is the rooted
binary tree, and let M = % (p(a) + p(b) + p(c) + p(d)) be the
Markov operator of G. Then o(M) = [—3,0] U[4,1].

Pf.
1. Set u = 2t<td=L ¢ C[G] and observe u? = 1.
2. Prove that < a, u > is isomorphic to D.

3. Prove that Koopman repr. and the regular repr. of D, are
weakly equivalent.

4. Write M — ol = (3 — a)l + 1p(a) + 3p(u) and use the
projective spectrum of D.



Hermitian metric on with Douglas), preliminary

P<(A) (
B: unital C*- alg A, ..., Ap € B, ¢ € B*.
wa(z) == A" (2)dA(z) = 33; A7 (2)Ajdz;, z € P(A).

Fundamental form: Qa(z) = —wj Awa.



Hermitian metric on P<(A
B: unital C*- alg A1, ..., An
wa(z) := AN (z)dA(z) = 37; A

Fundamental form: Qa(z) = —wj Awa.
$(Qa(2)) = —d(wa A wa)

= GAL(AT(2) AN (2)Alldz A d
= gjk(z)dz; Ndz,, z € P(A).

with Douglas), preliminary

(
B, ¢ € B*.
“1(2)Aidz;, z € P<(A).

)

Observe: When g4(z) := (gjk(z)) is positive definite on P<(A), it
defines an inner product on the holomorphic tangent bundle of
P<(A) through (82 , £k) = gjk(2).

Theorem

Let ¢ be a state on B (¢p(a*a) > 0, ¢(I) =1). Then ¢(Qa)
defines a Hermitian metric on P<(A) if and only if ¢ is faithful on
span{A1, ..., An}.



Theorem
If B= M(C), then Tr((2a) defines a complete metric on P(A)
for every tuple of matrices.
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Corollary
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G-invariant Hermitian metric on P<(A)).
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Theorem
If B= M(C), then Tr((2a) defines a complete metric on P(A)
for every tuple of matrices.

G =< gi,...,8n| -+ - >: finitely generated group. Let C}(G) be the
reduced C*-subalg. in B(¢%(G)). Define linear functional

¢(a) =< ade, be >. Then ¢ is a faithful tracial state on C;(G) .
Corollary

Let Ax(z) = zol + z1A\(g1) + - - - + znA(gn). Then $(Qa,) defines a
G-invariant Hermitian metric on P<(A)).

Theorem (Goldberg, Y., 2018)

Consider Do, and set A.(z) = | + z1\(a) + z2\(t). Then the
metric defined by ¢(Qa,) is imcomplete, and the completion
Note: o(\(a)) = o(\(t)) = {£1}.



Def.

» The metric on P<(A) defined by ¢(Q4(z)) is said to be Kahler
if dp(Qa(z)) =0.
» The metric on P<(A) defined by ¢(Q4(z)) is said to be flat if

2

92,07 logdet gy(z) =0, Vz e P(A), Vj, k.
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Theorem

Let Ag =1,A1,...,A, be elements in a C*-alg. B with a faithful

tracial state ¢. Then $(Qa(z)) defines a Kahler metric on P<(A) if
and only if Ay, ..., A, commute.



Def.
» The metric on P<(A) defined by ¢(Q4(z)) is said to be Kahler
if dp(Qa(z)) =0.
» The metric on P<(A) defined by ¢(Q4(z)) is said to be flat if

2

92,07 logdet gy(z) =0, Vz e P(A), Vj, k.

Theorem

Let Ag =1,A1,...,A, be elements in a C*-alg. B with a faithful
tracial state ¢. Then $(Qa(z)) defines a Kahler metric on P<(A) if
and only if Ay, ..., A, commute.

Example. If Ay, ..., A, is a basis of Mi(C) (n = k?), then Tr(Q4)
defines a complete, non-Kahler, flat and GL-invariant metric on
P<(A) = GLy.



A connection with complex dynamics

Def. A unitary representation (7, H) is self-similar if there exists a
d € N and a unitary map W : % — #H9 such that for all g € G
every entry in the d x d block matrix Wr(g)W* is either 0 or of
the form m(x) for some x € G. Observe that in this case exactly
one entry in every row or column of Wr(g)W™ is nonzero.



A connection with complex dynamics

Def. A unitary representation (7, H) is self-similar if there exists a
d € N and a unitary map W : % — #H9 such that for all g € G
every entry in the d x d block matrix Wr(g)W* is either 0 or of
the form m(x) for some x € G. Observe that in this case exactly
one entry in every row or column of Wr(g)W™ is nonzero.

Facts:
» The Koopman repr. p of Dy, is self-similar. In fact,

sl g o8]

Ay(2) = 20+ z1p(a) + z2p(t) = 2 20 + z2p(t)

> p is weakly equivalent to A, hence P(A,) = P(A)).

hence
N [zo + zp(a) 7 ]



When zy # +25, Ay(z) is invertible if and only if

20 + zot — z2(z0 — z2a)(23 — z3) 71 is invertible. Define

Flao.an.2) = (o — 2 - B).chn, (55 - ) ).



When zy # +25, Ay(z) is invertible if and only if
20 + 2ot — Z2(z9 — 223)(20 — 2z2)71 is invertible. Define

2 2 2 2
F(zo,z1,22) _21 z5), 21 22, 22( 25 —22)>.

Lem: F: P(A\) — P(A)).

Consider F : P> — P2, Denote the n-th iteration of F by F".



When zy # izz A,(z) is invertible if and only if
20 + 2ot — Z2(z9 — 223)(20 — 2z2)71 is invertible. Define

F(zo, z1, 22) - 21 2) 21222722(23 - 222)>

Lem: F: P(A\) — P(A)).
Consider F : P> — P2, Denote the n-th iteration of F by F".

Def.

v

Indeterminacy sets: I, = {z € P?|F"(z) = (0,0,0)}, n > 1.

Extended indeterminacy set: E = Up>1/,.

v

v

Fatou point: z has a nbd. V; such that {F"} is a normal
family on V.

Fatou set F(F): the set of Fatou points for F.

Julia set J(F): P2\ F(F).

v

v



Let T(x ) = 2x2 — 1,x € C (Chebyshev poly.).
7(z) = %A% p2 ¢ Note: z € p(Ay) iff 7(z) ¢ [-1,1].

2212

Fact: J(T)=[-1,1].



Let T(x ) = 2x2 — 1,x € C (Chebyshev poly.).
7(z) = %A% p2 ¢ Note: z € p(Ay) iff 7(z) ¢ [-1,1].

2212

Fact: J(T)=[-1,1].

Theorem (Grigorchuk, Y., 2017)
The following diagram commutes:



the Julia set

For z € p(A,), define

1 1 1
fn(z) = 27(z) T 22 T(r(2))7(2) T 21T 1(7(2)) T(7(2))7(2)
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the Julia set

For z € p(A,), define

1 1 1
fn(z) = 27(z) T 22 T(r(2))7(2) T 21T 1(7(2)) T(7(2))7(2)

Lemma (Goldberg, Y.)

(a) {fn} converges normally (to f) on p(A,).
(b) In+1 C {22 =4z + zlf,,(z)}.
(c)lim, F(z) = [z0: 0: zo + z1f(2)], z € p(A) \ E

Theorem (Goldberg, Y.)

Consider the map F : P> — IP? derived from the self-similarity of
the Koopman repr. of D,. Then J(F) = p(A\) UE.



Definition

Consider operator-valued 1-form wa(z) = —(A — z)"ldz.
For x € H with ||x|| = 1, let ¢, be the vector state on B such that
Px(A) =< Ax,x >, AcB.

Define metric gy through

gx(2)dz A dz = ¢ (wi(2) Awa(2)) = [|(A - 2)"Ix|]2dz A dz.



Definition

Consider operator-valued 1-form wa(z) = —(A — z)"ldz.
For x € H with ||x|| = 1, let ¢, be the vector state on B such that
Px(A) =< Ax,x >, AcB.

Define metric gy through
gx(2)dz A dz = ¢ (wi(2) Awa(2)) = [|(A - 2)"Ix|]2dz A dz.

Notes:

1. gy defines a non-Euclidean metric on p(A) that may have
singularities at o(A).

2. gx depends on A and x.



» If A(z) = A — zl, then wa(z) = —(A — zI)tdz.
» Maurer-Cartan form g~ 'dg.

» For a linear functional d) on B,
P(wa(z)) = 271 (A™ 1(z)A;)dz; is a holomorphic 1-form on
P<(A). For a k-linear functional F,
k(F) := F(wa(z), wa(z), ..., w(z)) is a holomorphic k-form
on P<(A).



Definition. A k-linear functional F on B is said to be invariant if

F(ala az, , - ak) = F(galg_17 ga2g_17 sey gakg_l)

for all a1, az, , ..., ax in B and every invertible g € B.



Definition. A k-linear functional F on B is said to be invariant if

F(ala az, , - ak) = F(galg_17 ga2g_17 sey gakg_l)
for all a1, az, , ..., ax in B and every invertible g € B.
Proposition

If the k-linear functional F is invariant, then
d(wa(z2),wa(z), ...,wa(z)) is closed.



Hochschild g-cochain: (q + 1)-linear functionals ¢ on B.

¢ is a cyclic cocycle if for all elements ag, a1, ..., aq in B,
(1) ¢(ao, a1, o ag) = (-1)%¢(aq. a0, ..., ag-1), and
(2) b ) = 0( 1)J¢)(ao, ey @jj41,y ey aq+1)+

(
( 1) q+1 ¢(aq+130a al, - aq) =0,

HC9(B): the space of g-cyclic cocycles.



Hochschild g-cochain: (q + 1)-linear functionals ¢ on B.

¢ is a cyclic cocycle if for all elements ag, a1, ..., aq in B,
(1) &(a0, a1, o ag) = (-1)%¢(aq. a0, ..., ag-1), and
( ) b ) j= O( 1)J¢(307 ceey @jAj41y ey aq+1)+

(
( 1) q+1 ¢(aq+130a al, - aq) =0,

HC9(B): the space of g-cyclic cocycles.

Proposition

(Cade and Y., 2012) Let B be a topological algebra and ¢ be a
continuous cyclic g-cocycle on B. Then for any tuple A,

k() = dp(wa(z),wa(z), ...,wa(z)) is a closed holomorphic q + 1
form on P(A). In fact,

S (bg) = ~di(0)



Examples

> Let B = M(C). Then Jacobi's formula:
Tr(wa(z)) = dlog detA(z), z e P<(A).
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Examples

> Let B = M(C). Then Jacobi's formula:
Tr(wa(z)) = dlog detA(z), z e P<(A).

» If B is a topological algebra with a continuous trace tr, then
for g even

#(ao, a1, az, ..., agq) = tr(apaiaz- - aq)

is a cyclic g-cocycle, and tr(w9t1A(z)) is closed.

» tr(w3A(z)): Chern-Simons forms.

Proposition

(Cade and Y., 2009) If A is a 4-tuple in a Banachl algebra with a
continuous trace tr, then tr(w3) = ¢(2)S(z), where

S(z) = zandzadzzdzy — zodz1dz3dzs + z3dz1dzodzs — 24 dzy dZpdz3,
and ¢(z) is a holomorphic function on P¢(A).

(A higher order form of Jacobi's formula!)



On My(C)

Let A; =/ and Ay, A3z, A4 be the Pauli matrices.

4
z) = szAk, and wa(z) = A1 (z2)dA(2).
k=1

Then
1) P(A)={zeC*: 22— 28— 22— z2 =0}.
2) P¢(A) = GL(2, C).

3) Tr(w3(2)) = 12iD_25(z), where D = z2 — z3 — 722 — z2.

4) SU(2, C)) = S3 = {(x1, ix2, ix3, ixa): X2 + x5+ x5 +x2 = 1},
and Tr(w3(z))|m = —125(x) is the standard 3-form on S3.



