Projective spectrum, group theory and complex dynamics

Rongwei Yang SUNY at Albany, USA

Banff, April 1, 2019

Spectrum

 \mathcal{B} : a unital Banach algebra over \mathbb{C} with unit I, $a \in \mathcal{B}$.

spectrum $\sigma(a) = \{z \in \mathbb{C} : a - zI \text{ not invertible in } \mathcal{B}.\}$

▶ Conventional point of view: $\sigma(a)$ is a reflects a.

Spectrum

 \mathcal{B} : a unital Banach algebra over \mathbb{C} with unit I, $a \in \mathcal{B}$.

spectrum $\sigma(a) = \{z \in \mathbb{C} : a - zl \text{ not invertible in } \mathcal{B}.\}$

- ▶ Conventional point of view: $\sigma(a)$ is a reflects a.
- A different point of view: $\sigma(a)$ is a reflects how a and I interact.

Spectrum

 \mathcal{B} : a unital Banach algebra over \mathbb{C} with unit I, $a \in \mathcal{B}$.

spectrum $\sigma(a) = \{z \in \mathbb{C} : a - zI \text{ not invertible in } \mathcal{B}.\}$

- ▶ Conventional point of view: $\sigma(a)$ is a reflects a.
- A different point of view: $\sigma(a)$ is a reflects how a and I interact.
- ▶ linear pencil : $A_1 \lambda A_2$;
- ▶ multiparameter pencil: $A(z) = z_1A_1 + z_2A_2 + \cdots + z_nA_n$; (algebraic geometry, differential equations, group theory, math physics, etc.)

Joint spectra

 $A_1, A_2, ..., A_n$: elements in \mathcal{B} .

Problem. How to define a joint spectrum for these elements?

Preferred properties:

- 1. Reflects joint behavior of the elements.
- 2. Reflects interaction of the elements.
- 3. Reflects algebraic properties of the elements, if any.
- 4. Computable in many examples.

Known joint spectra:

- ▶ 70s, Taylor's spectrum for commuting operators: invertibility of $(A_1 \lambda_1 I, A_2 \lambda_2 I, ..., A_n \lambda_n I)$ through the exactness of Koszul complex.
- ▶ 70s, Harte spectrum: invertibility of $\sum B_k(A_k \lambda_k I)$.
- ▶ 80s, HcIntosh-Pryde spectrum: invertibility of $\sum (A_k \lambda_k I)^2$

Projective spectrum

Let
$$A(z) = z_1 A_1 + z_2 A_2 + \cdots + z_n A_n$$
.

Projective joint spectrum:

$$\begin{split} P(A) &= \{z \in \mathbb{C}^n: \ A(z) \text{ is not invertible in } \mathcal{B}.\} \\ p(A) &= \{z = [z_1, \ z_2, \ ..., \ z_n] \in \mathbb{P}^{n-1}: \ A(z) \text{ is not invertible in } \mathcal{B}.\} \end{split}$$

Projective resolvent sets: $P^c(A)$ in \mathbb{C}^n , $p^c(A)$ in \mathbb{P}^{n-1} .

Projective spectrum

Let
$$A(z) = z_1 A_1 + z_2 A_2 + \cdots + z_n A_n$$
.

Projective joint spectrum:

$$\begin{split} P(A) &= \{z \in \mathbb{C}^n: \ A(z) \text{ is not invertible in } \mathcal{B}.\} \\ p(A) &= \{z = [z_1, \ z_2, \ ..., \ z_n] \in \mathbb{P}^{n-1}: \ A(z) \text{ is not invertible in } \mathcal{B}.\} \end{split}$$

Projective resolvent sets: $P^c(A)$ in \mathbb{C}^n , $p^c(A)$ in \mathbb{P}^{n-1} .

Features:

- 1. symmetry: $A_1, ..., A_n$ are treated equally.
- 2. base-free: parameter is assigned to each A_j . "I can help but I am not central".
- 3. generality: applicable to noncommuting operators.
- 4. computability: easy to compute in many examples.

Examples

▶ 1. Let $\mathcal{B} = M_2(\mathbb{C})$, $A_0 = I$ and $A_1 = i\sigma_1$, $A_2 = i\sigma_2$, $A_3 = i\sigma_3$, where σ_i are the Pauli matrices, i.e.,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then $\mathfrak{su}(2) = span\{A_1,A_2,A_3\}$. And $p(A) = \{z \in \mathbb{P}^3: z_0^2 + z_1^2 + z_2^2 + z_3^2 = 0\}$ is a compact algebraic manifold.

Examples

▶ 1. Let $\mathcal{B} = M_2(\mathbb{C})$, $A_0 = I$ and $A_1 = i\sigma_1$, $A_2 = i\sigma_2$, $A_3 = i\sigma_3$, where σ_i are the Pauli matrices, i.e.,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then $\mathfrak{su}(2) = span\{A_1, A_2, A_3\}$. And $p(A) = \{z \in \mathbb{P}^3 : z_0^2 + z_1^2 + z_2^2 + z_3^2 = 0\}$ is a compact algebraic manifold.

▶ 2 [Bannon, Cade, Y., 2013]. Free group F_n with generators $\{g_1, g_2, \cdots, g_n\}$, and let λ be the regular representation of F_n on $\ell^2(F_n)$. Set $A(z) = z_1\lambda(g_1) + \cdots + z_n\lambda(g_n)$, then

$$P(A) = \bigcap_{j=1}^{n} R_j,$$

where $R_i = \{z \in \mathbb{C}^n : 2|z_i|^2 \le ||z||^2\}, i = 1, 2, \dots, n.$

▶ 3 [He, Wang, Y., 2017]. The Cuntz algebra \mathcal{O}_n is the universal C^* -algebra generated by n isometries S_1, S_2, \ldots, S_n satisfying

$$\sum_{i=1}^n S_i S_i^* = I \text{ and } S_i^* S_j = \delta_{ij} I \text{ for } 1 \leq i, j \leq n.$$

Let $S(z) = z_1 S_1 + \cdots z_n S_n$ and $S_*(z) = I + S(z)$. Then it is shown in that

- (a) $P(S) = \mathbb{C}^n$.
- (b) $P^c(S_*)$ is equal to the unit ball $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}.$

▶ 3 [He, Wang, Y., 2017]. The Cuntz algebra \mathcal{O}_n is the universal C^* -algebra generated by n isometries S_1, S_2, \ldots, S_n satisfying

$$\sum_{i=1}^n S_i S_i^* = I \text{ and } S_i^* S_j = \delta_{ij} I \text{ for } 1 \leq i, j \leq n.$$

Let $S(z) = z_1 S_1 + \cdots + z_n S_n$ and $S_*(z) = I + S(z)$. Then it is shown in that

- (a) $P(S) = \mathbb{C}^n$.
- (b) $P^c(S_*)$ is equal to the unit ball $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}.$
- ▶ 4 [Stessin, Y., Zhu, 2011; He, Wang, Y., 2017]. If $A_*(z) = I + z_1A_1 + \cdots + z_nA_n$, where A_j are compact operators on a Hilbert space, then
 - (i) $P(A_*)$ is a thin set.
 - (ii) When $P(A_*)$ is *smooth*, then $E_A = \bigvee_{z \in P(A_*)} \operatorname{Ker} A_*(z)$ is a holomorphic line bundle (kernel bundle) over $P(A_*)$.

 $G=< g_1, g_2, \cdots, g_n \mid \cdots >, \rho : G \rightarrow U(\mathcal{H})$ a unitary representation. Set $A_o(z)=z_0I+z_1\rho(g_1)+\cdots+z_n\rho(g_n)$.

 $G=< g_1,g_2,\cdots,g_n\mid \cdots>$, $\rho:G\to U(\mathcal{H})$ a unitary representation.

Set
$$A_{\rho}(z) = z_0 I + z_1 \rho(g_1) + \cdots + z_n \rho(g_n)$$
.

Example: If $1_G:G\to 1$ is the trivial representation, then $P(A_{1_G})=\{z_0+z_1+\cdots+z_n=0\}:=H_1.$

 $G=< g_1,g_2,\cdots,g_n\mid \cdots>$, $\rho:G\to U(\mathcal{H})$ a unitary representation.

Set
$$A_{\rho}(z) = z_0 I + z_1 \rho(g_1) + \cdots + z_n \rho(g_n)$$
.

Example: If $1_G:G\to 1$ is the trivial representation, then $P(A_{1_G})=\{z_0+z_1+\cdots+z_n=0\}:=H_1.$

Theorem (Y.)

Let $\lambda_G: G \to \ell^2(G)$ be the left regular representation. Then G is amenable if and only if $P(A_{\lambda})$ contains the hyperplane H_1 .

Proposition

If ρ and π are weakly equivalent unitary representations, then $P(A_{\rho}) = P(A_{\pi})$.

 $G=< g_1,g_2,\cdots,g_n\mid \cdots>$, $\rho:G\to U(\mathcal{H})$ a unitary representation.

Set
$$A_{\rho}(z)=z_0I+z_1\rho(g_1)+\cdots+z_n\rho(g_n).$$

Example: If $1_G: G \to 1$ is the trivial representation, then $P(A_{1_G}) = \{z_0 + z_1 + \cdots + z_n = 0\} := H_1$.

Theorem (Y.)

Let $\lambda_G : G \to \ell^2(G)$ be the left regular representation. Then G is amenable if and only if $P(A_{\lambda})$ contains the hyperplane H_1 .

Proposition

If ρ and π are weakly equivalent unitary representations, then $P(A_{\rho}) = P(A_{\pi})$.

Problem: Does the converse hold for irreducible representations?

Infinite dihedral group $D_{\infty} = \langle a, t \mid a^2 = t^2 = 1 \rangle$

For a fixed $\theta \in [0, 2\pi)$, consider two-dimensional representation ρ_{θ} given by

$$ho_{ heta}(a) = egin{bmatrix} 0 & e^{i heta} \ e^{-i heta} & 0 \end{bmatrix}, \quad
ho_{ heta}(t) = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}.$$

Known: every irreducible repr. of D_{∞} is either one dimensional or two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D_{∞} is of the form ρ_{θ} for some $\theta \in (0, \pi)$.

Infinite dihedral group $D_{\infty} = \langle a, t \mid a^2 = t^2 = 1 \rangle$

For a fixed $\theta \in [0, 2\pi)$, consider two-dimensional representation ρ_{θ} given by

$$ho_{ heta}(a) = egin{bmatrix} 0 & e^{i heta} \ e^{-i heta} & 0 \end{bmatrix}, \quad
ho_{ heta}(t) = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}.$$

Known: every irreducible repr. of D_{∞} is either one dimensional or two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D_{∞} is of the form ρ_{θ} for some $\theta \in (0, \pi)$.

Fact:
$$P(A_{\rho_{\theta}}) = \{z \in \mathbb{C}^3 : z_0^2 - z_1^2 - z_2^2 - 2z_1z_2\cos\theta = 0\}.$$

Infinite dihedral group $D_{\infty} = \langle a, t \mid a^2 = t^2 = 1 \rangle$

For a fixed $\theta \in [0, 2\pi)$, consider two-dimensional representation ρ_{θ} given by

$$ho_{ heta}(a) = egin{bmatrix} 0 & e^{i heta} \ e^{-i heta} & 0 \end{bmatrix}, \quad
ho_{ heta}(t) = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}.$$

Known: every irreducible repr. of D_{∞} is either one dimensional or two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D_{∞} is of the form ρ_{θ} for some $\theta \in (0, \pi)$.

Fact:
$$P(A_{\rho_{\theta}}) = \{z \in \mathbb{C}^3 : z_0^2 - z_1^2 - z_2^2 - 2z_1z_2\cos\theta = 0\}.$$

Theorem (Grigorchuk, Y., 2017)

If $\lambda: D_{\infty} \longrightarrow U(l^2(D_{\infty}))$ is the left regular representation, then

$$P(A_{\lambda}) = \bigcup_{0 < \theta < 2\pi} P(A_{\rho_{\theta}}).$$

Proof

The left regular representation of D_{∞} is equivalent to the following representation λ of D_{∞} on $L^2(\mathbb{T}, \frac{d\theta}{2\pi}) \oplus L^2(\mathbb{T}, \frac{d\theta}{2\pi})$:

$$\lambda(a) = \begin{bmatrix} 0 & T \\ T^* & 0 \end{bmatrix}, \quad \lambda(t) = \begin{bmatrix} 0 & I_0 \\ I_0 & 0 \end{bmatrix},$$

where T is the bilateral shift operator $L^2(\mathbb{T})$, i.e.,

$$Tf(e^{i\theta})=e^{i\theta}f(e^{i\theta})$$
. If we let $T=\int_0^{2\pi}e^{i\theta}dE(e^{i\theta})$. Then

$$\lambda(a) = \int_0^{2\pi} \begin{bmatrix} 0 & e^{i\theta} \\ e^{-i\theta} & 0 \end{bmatrix} dE(e^{i\theta}) = \int_0^{2\pi} \rho_{\theta}(a) dE(e^{i\theta});$$
 $\lambda(t) = \int_0^{2\pi} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} dE(e^{i\theta}) = \int_0^{2\pi} \rho_{\theta}(t) dE(e^{i\theta}).$

Group of intermediate growth

Let $S=\{g_1,...,g_n\}$ be a symmetric generating set of group G. Word length: $|x|=\min\{k|x=x_1x_2\cdots x_k,\ x_j\in S\},\ |e|=0$. Set $B_r(G)=\{x\in G||x|\leq r\},\ r\geq 0$.

Group of intermediate growth

Let $S=\{g_1,...,g_n\}$ be a symmetric generating set of group G. Word length: $|x|=\min\{k|x=x_1x_2\cdots x_k,\ x_j\in S\}$, |e|=0. Set $B_r(G)=\{x\in G||x|\leq r\},\ r\geq 0$.

- ▶ *G* has polynomial growth if $|B_r| \le \alpha r^{\beta}$ for some fixed $\alpha, \beta > 0$.
- ▶ *G* has exponential growth if $|B_r| \ge \alpha \beta^r$ for some fixed $\alpha > 0, \beta > 1$.
- ▶ Milnor's question (60s): Is there a group of intermediate growth.

Group of intermediate growth

Let $S=\{g_1,...,g_n\}$ be a symmetric generating set of group G. Word length: $|x|=\min\{k|x=x_1x_2\cdots x_k,\ x_j\in S\},\ |e|=0$. Set $B_r(G)=\{x\in G||x|\leq r\},\ r\geq 0$.

- ▶ *G* has polynomial growth if $|B_r| \le \alpha r^{\beta}$ for some fixed $\alpha, \beta > 0$.
- ▶ *G* has exponential growth if $|B_r| \ge \alpha \beta^r$ for some fixed $\alpha > 0, \beta > 1$.
- ▶ Milnor's question (60s): Is there a group of intermediate growth.

Grigorchuk (80, 84): Yes! $\mathcal{G} = \langle a, b, c, d \rangle$, where

$$a^2 = b^2 = c^2 = d^2 = bcd = 1$$

 $\sigma^k((ad)^4) = \sigma^k((adacac)^4) = 1, \ k = 0, \ 1, \ 2, \ \cdots,$

where $\sigma: a \to aca, b \to d, c \to b, d \to c$ is a substitution. $(e^{\sqrt{r}} \prec |(B_r(\mathcal{G})| \prec e^{0.991}).$

Let $\rho: \mathcal{G} \to L^2(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M = \frac{1}{4}(\rho(a) + \rho(b) + \rho(c) + \rho(d))$ be the Markov operator of \mathcal{G} . Then $\sigma(M) = [-\frac{1}{2},0] \cup [\frac{1}{2},1]$.

Let $\rho: \mathcal{G} \to L^2(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M = \frac{1}{4} \left(\rho(a) + \rho(b) + \rho(c) + \rho(d) \right)$ be the Markov operator of \mathcal{G} . Then $\sigma(M) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1]$.

1. Set
$$u = \frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$$
 and observe $u^2 = 1$.

Let $\rho: \mathcal{G} \to L^2(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M = \frac{1}{4} \left(\rho(a) + \rho(b) + \rho(c) + \rho(d) \right)$ be the Markov operator of \mathcal{G} . Then $\sigma(M) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1]$.

- 1. Set $u = \frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^2 = 1$.
- 2. Prove that $\langle a, u \rangle$ is isomorphic to D_{∞} .

Let $\rho: \mathcal{G} \to L^2(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M = \frac{1}{4} \left(\rho(a) + \rho(b) + \rho(c) + \rho(d) \right)$ be the Markov operator of \mathcal{G} . Then $\sigma(M) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1]$.

- 1. Set $u = \frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^2 = 1$.
- 2. Prove that $\langle a, u \rangle$ is isomorphic to D_{∞} .
- 3. Prove that Koopman repr. and the regular repr. of D_{∞} are weakly equivalent.

Let $\rho: \mathcal{G} \to L^2(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M = \frac{1}{4} \left(\rho(a) + \rho(b) + \rho(c) + \rho(d) \right)$ be the Markov operator of \mathcal{G} . Then $\sigma(M) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1]$.

- 1. Set $u = \frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^2 = 1$.
- 2. Prove that $\langle a, u \rangle$ is isomorphic to D_{∞} .
- 3. Prove that Koopman repr. and the regular repr. of D_{∞} are weakly equivalent.
- 4. Write $M \alpha I = (\frac{1}{4} \alpha)I + \frac{1}{4}\rho(a) + \frac{1}{2}\rho(u)$ and use the projective spectrum of D_{∞} .

Hermitian metric on $P^c(A)$ (with Douglas), preliminary

 $\begin{array}{l} \mathcal{B}\colon \text{unital } C^*\text{-alg., } A_1,...,A_n \in \mathcal{B}, \ \phi \in \mathcal{B}^*. \\ \omega_A(z) := A^{-1}(z) dA(z) = \sum_j A^{-1}(z) A_j dz_j, z \in P^c(A). \end{array}$

Fundamental form: $\Omega_A(z) = -\omega_A^* \wedge \omega_A$.

Hermitian metric on $P^{c}(A)$ (with Douglas), preliminary

 $\begin{array}{l} \mathcal{B} \colon \text{unital } C^*\text{-alg., } A_1,...,A_n \in \mathcal{B}, \ \phi \in \mathcal{B}^*. \\ \omega_A(z) := A^{-1}(z) dA(z) = \sum_j A^{-1}(z) A_j dz_j, z \in P^c(A). \end{array}$

Fundamental form: $\Omega_A(z) = -\omega_A^* \wedge \omega_A$.

$$\phi(\Omega_{A}(z)) = -\phi(\omega_{A}^{*} \wedge \omega_{A})$$

$$= \phi[A_{k}^{*}(A^{-1}(z))^{*}A^{-1}(z)A_{j}]dz_{j} \wedge d\bar{z}_{k}$$

$$:= g_{jk}(z)dz_{j} \wedge d\bar{z}_{k}, \quad z \in P^{c}(A).$$

Observe: When $g_{\phi}(z):=(g_{jk}(z))$ is positive definite on $P^{c}(A)$, it defines an inner product on the holomorphic tangent bundle of $P^{c}(A)$ through $(\frac{\partial}{\partial z_{i}},\frac{\partial}{\partial z_{k}})_{z}=g_{jk}(z)$.

Theorem

Let ϕ be a state on \mathcal{B} ($\phi(a^*a) \geq 0$, $\phi(I) = 1$). Then $\phi(\Omega_A)$ defines a Hermitian metric on $P^c(A)$ if and only if ϕ is faithful on $span\{A_1,...,A_n\}$.

If $\mathcal{B} = M_k(\mathbb{C})$, then $\mathsf{Tr}((\Omega_A)$ defines a complete metric on $P^c(A)$ for every tuple of matrices.

If $\mathcal{B} = M_k(\mathbb{C})$, then $\mathsf{Tr}((\Omega_A)$ defines a complete metric on $P^c(A)$ for every tuple of matrices.

 $G=< g_1,...,g_n|\cdots>$: finitely generated group. Let $C^*_r(G)$ be the reduced C^* -subalg. in $B(\ell^2(G))$. Define linear functional $\phi(a)=< a\delta_e, \delta_e>$. Then ϕ is a faithful tracial state on $C^*_r(G)$.

Corollary

Let $A_{\lambda}(z) = z_0 I + z_1 \lambda(g_1) + \cdots + z_n \lambda(g_n)$. Then $\phi(\Omega_{A_{\lambda}})$ defines a G-invariant Hermitian metric on $P^c(A_{\lambda})$.

If $\mathcal{B} = M_k(\mathbb{C})$, then $\mathsf{Tr}((\Omega_A)$ defines a complete metric on $P^c(A)$ for every tuple of matrices.

 $G=< g_1,...,g_n|\cdots>$: finitely generated group. Let $C^*_r(G)$ be the reduced C^* -subalg. in $B(\ell^2(G))$. Define linear functional $\phi(a)=< a\delta_e, \delta_e>$. Then ϕ is a faithful tracial state on $C^*_r(G)$.

Corollary

Let $A_{\lambda}(z) = z_0 I + z_1 \lambda(g_1) + \cdots + z_n \lambda(g_n)$. Then $\phi(\Omega_{A_{\lambda}})$ defines a G-invariant Hermitian metric on $P^c(A_{\lambda})$.

Theorem (Goldberg, Y., 2018)

Consider D_{∞} and set $A_*(z) = I + z_1\lambda(a) + z_2\lambda(t)$. Then the metric defined by $\phi(\Omega_{A_*})$ is imcomplete, and the completion $[P^c(A_*)] = \mathbb{C}^2 \setminus \{(\pm 1, 0), (0, \pm 1)\}.$

If $\mathcal{B} = M_k(\mathbb{C})$, then $\mathsf{Tr}((\Omega_A)$ defines a complete metric on $P^c(A)$ for every tuple of matrices.

 $G=< g_1,...,g_n|\cdots>$: finitely generated group. Let $C^*_r(G)$ be the reduced C^* -subalg. in $B(\ell^2(G))$. Define linear functional $\phi(a)=< a\delta_e, \delta_e>$. Then ϕ is a faithful tracial state on $C^*_r(G)$.

Corollary

Let $A_{\lambda}(z) = z_0 I + z_1 \lambda(g_1) + \cdots + z_n \lambda(g_n)$. Then $\phi(\Omega_{A_{\lambda}})$ defines a G-invariant Hermitian metric on $P^c(A_{\lambda})$.

Theorem (Goldberg, Y., 2018)

Consider D_{∞} and set $A_*(z) = I + z_1\lambda(a) + z_2\lambda(t)$. Then the metric defined by $\phi(\Omega_{A_*})$ is imcomplete, and the completion $[P^c(A_*)] = \mathbb{C}^2 \setminus \{(\pm 1, 0), (0, \pm 1)\}.$

Note:
$$\sigma(\lambda(a)) = \sigma(\lambda(t)) = \{\pm 1\}.$$

Def.

- ► The metric on $P^c(A)$ defined by $\phi(\Omega_A(z))$ is said to be Kähler if $d\phi(\Omega_A(z)) = 0$.
- ▶ The metric on $P^c(A)$ defined by $\phi(\Omega_A(z))$ is said to be flat if

$$rac{\partial^2}{\partial z_i \partial ar{z_k}} \log \det g_\phi(z) = 0, \;\; orall z \in P^c(A), \; orall j, k.$$

Def.

- ► The metric on $P^c(A)$ defined by $\phi(\Omega_A(z))$ is said to be Kähler if $d\phi(\Omega_A(z)) = 0$.
- ▶ The metric on $P^c(A)$ defined by $\phi(\Omega_A(z))$ is said to be flat if

$$rac{\partial^2}{\partial z_j \partial ar{z_k}} \log \det g_\phi(z) = 0, \;\; orall z \in P^c(A), \; orall j, k.$$

Theorem

Let $A_0 = I, A_1, ..., A_n$ be elements in a C^* -alg. \mathcal{B} with a faithful tracial state ϕ . Then $\phi(\Omega_A(z))$ defines a Kähler metric on $P^c(A)$ if and only if $A_1, ..., A_n$ commute.

Def.

- ► The metric on $P^c(A)$ defined by $\phi(\Omega_A(z))$ is said to be Kähler if $d\phi(\Omega_A(z)) = 0$.
- ▶ The metric on $P^c(A)$ defined by $\phi(\Omega_A(z))$ is said to be flat if

$$rac{\partial^2}{\partial z_j \partial ar{z_k}} \log \det g_\phi(z) = 0, \;\; orall z \in P^c(A), \; orall j, k.$$

Theorem

Let $A_0 = I, A_1, ..., A_n$ be elements in a C^* -alg. \mathcal{B} with a faithful tracial state ϕ . Then $\phi(\Omega_A(z))$ defines a Kähler metric on $P^c(A)$ if and only if $A_1, ..., A_n$ commute.

Example. If $A_1, ..., A_n$ is a basis of $M_k(\mathbb{C})$ $(n = k^2)$, then $Tr(\Omega_A)$ defines a complete, non-Kähler, flat and GL_k -invariant metric on $P^c(A) \cong GL_k$.

A connection with complex dynamics

Def. A unitary representation (π, \mathcal{H}) is self-similar if there exists a $d \in \mathbb{N}$ and a unitary map $W : \mathcal{H} \to \mathcal{H}^d$ such that for all $g \in G$ every entry in the $d \times d$ block matrix $W\pi(g)W^*$ is either 0 or of the form $\pi(x)$ for some $x \in G$. Observe that in this case exactly one entry in every row or column of $W\pi(g)W^*$ is nonzero.

A connection with complex dynamics

Def. A unitary representation (π, \mathcal{H}) is self-similar if there exists a $d \in \mathbb{N}$ and a unitary map $W : \mathcal{H} \to \mathcal{H}^d$ such that for all $g \in G$ every entry in the $d \times d$ block matrix $W\pi(g)W^*$ is either 0 or of the form $\pi(x)$ for some $x \in G$. Observe that in this case exactly one entry in every row or column of $W\pi(g)W^*$ is nonzero.

Facts:

▶ The Koopman repr. ρ of D_{∞} is self-similar. In fact,

$$\rho(a) \cong \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}, \quad \rho(t) \cong \begin{bmatrix} \rho(a) & 0 \\ 0 & \rho(t) \end{bmatrix},$$

hence

$$A_{\rho}(z) = z_0 + z_1 \rho(a) + z_2 \rho(t) \cong \begin{bmatrix} z_0 + z_2 \rho(a) & z_1 \\ z_1 & z_0 + z_2 \rho(t) \end{bmatrix}.$$

• ρ is weakly equivalent to λ , hence $P(A_{\rho}) = P(A_{\lambda})$.

When $z_0 \neq \pm z_2$, $A_{\rho}(z)$ is invertible if and only if $z_0 + z_2 t - z_1^2 (z_0 - z_2 a) (z_0^2 - z_2^2)^{-1}$ is invertible. Define

$$F(z_0,z_1,z_2) = \left(z_0(z_0^2-z_1^2-z_2^2), z_1^2z_2, z_2(z_0^2-z_2^2)\right).$$

When $z_0 \neq \pm z_2$, $A_{\rho}(z)$ is invertible if and only if $z_0 + z_2 t - z_1^2 (z_0 - z_2 a) (z_0^2 - z_2^2)^{-1}$ is invertible. Define

$$F(z_0,z_1,z_2) = \left(z_0(z_0^2-z_1^2-z_2^2), z_1^2z_2, z_2(z_0^2-z_2^2)\right).$$

Lem: $F: P(A_{\lambda}) \rightarrow P(A_{\lambda})$.

Consider $F: \mathbb{P}^2 \to \mathbb{P}^2$. Denote the *n*-th iteration of F by F^n .

When $z_0 \neq \pm z_2$, $A_\rho(z)$ is invertible if and only if $z_0 + z_2 t - z_1^2 (z_0 - z_2 a) (z_0^2 - z_2^2)^{-1}$ is invertible. Define

$$F(z_0,z_1,z_2) = \left(z_0(z_0^2-z_1^2-z_2^2), z_1^2z_2, z_2(z_0^2-z_2^2)\right).$$

Lem: $F: P(A_{\lambda}) \rightarrow P(A_{\lambda})$.

Consider $F: \mathbb{P}^2 \to \mathbb{P}^2$. Denote the *n*-th iteration of F by F^n .

Def.

- ▶ Indeterminacy sets: $I_n = \{z \in \mathbb{P}^2 | F^n(z) = (0,0,0)\}, n \ge 1.$
- ▶ Extended indeterminacy set: $E = \overline{\bigcup_{n \ge 1} I_n}$.
- ▶ Fatou point: z has a nbd. V_z such that $\{F^n\}$ is a normal family on V_z .
- ▶ Fatou set $\mathcal{F}(F)$: the set of Fatou points for F.
- ▶ Julia set $\mathcal{J}(F)$: $\mathbb{P}^2 \setminus \mathcal{F}(F)$.

Let
$$T(x) = 2x^2 - 1$$
, $x \in \hat{\mathbb{C}}$ (Chebyshev poly.). $\tau(z) = \frac{z_0^2 - z_1^2 - z_2^2}{2z_1 z_2} : \mathbb{P}^2 \to \hat{\mathbb{C}}$. Note: $z \in p(A_\lambda)$ iff $\tau(z) \notin [-1, 1]$.

Fact:
$$\mathcal{J}(T) = [-1, 1]$$
.

Let
$$T(x) = 2x^2 - 1$$
, $x \in \hat{\mathbb{C}}$ (Chebyshev poly.). $\tau(z) = \frac{z_0^2 - z_1^2 - z_2^2}{2z_1z_2} : \mathbb{P}^2 \to \hat{\mathbb{C}}$. Note: $z \in p(A_\lambda)$ iff $\tau(z) \notin [-1, 1]$.

Fact: $\mathcal{J}(T) = [-1, 1]$.

Theorem (Grigorchuk, Y., 2017)

The following diagram commutes:

$$\begin{array}{ccc} \mathbb{P}^2 \setminus I_1 \xrightarrow{F} \mathbb{P}^2 \\ \downarrow^{\tau} & \downarrow^{\tau} \\ \hat{\mathbb{C}} \xrightarrow{T} \hat{\mathbb{C}}. \end{array}$$

the Julia set

For
$$z \in p^c(A_\lambda)$$
, define $f_n(z) = \frac{1}{2\tau(z)} + \frac{1}{2^2T(\tau(z))\tau(z)} + \cdots + \frac{1}{2^{n-1}T^{n-1}(\tau(z))\cdots T(\tau(z))\tau(z)}$.

the Julia set

For
$$z \in p^c(A_\lambda)$$
, define $f_n(z) = \frac{1}{2\tau(z)} + \frac{1}{2^2T(\tau(z))\tau(z)} + \cdots + \frac{1}{2^{n-1}T^{n-1}(\tau(z))\cdots T(\tau(z))\tau(z)}$.

Lemma (Goldberg, Y.)

- (a) $\{f_n\}$ converges normally (to f) on $p^c(A_\lambda)$.
- (b) $I_{n+1} \subset \{z_2 = \pm z_0 + z_1 f_n(z)\}.$
- (c) $\lim_n F^n(z) = [z_0 : 0 : z_2 + z_1 f(z)], \ z \in p^c(A) \setminus E$

the Julia set

For
$$z \in p^c(A_\lambda)$$
, define $f_n(z) = \frac{1}{2\tau(z)} + \frac{1}{2^2T(\tau(z))\tau(z)} + \cdots + \frac{1}{2^{n-1}T^{n-1}(\tau(z))\cdots T(\tau(z))\tau(z)}$.

Lemma (Goldberg, Y.)

- (a) $\{f_n\}$ converges normally (to f) on $p^c(A_\lambda)$.
- (b) $I_{n+1} \subset \{z_2 = \pm z_0 + z_1 f_n(z)\}.$
- (c) $\lim_n F^n(z) = [z_0 : 0 : z_2 + z_1 f(z)], \ z \in p^c(A) \setminus E$

Theorem (Goldberg, Y.)

Consider the map $F: \mathbb{P}^2 \to \mathbb{P}^2$ derived from the self-similarity of the Koopman repr. of D_{∞} . Then $\mathcal{J}(F) = p(A_{\lambda}) \cup E$.

Definition

Consider operator-valued 1-form $\omega_A(z) = -(A-z)^{-1}dz$. For $x \in \mathcal{H}$ with ||x|| = 1, let ϕ_x be the vector state on \mathcal{B} such that $\phi_x(A) = \langle Ax, x \rangle$, $A \in \mathcal{B}$.

Define metric g_x through

$$g_x(z)dz \wedge d\bar{z} = \phi_x(\omega_A^*(z) \wedge \omega_A(z)) = \|(A-z)^{-1}x\|^2 dz \wedge d\bar{z}.$$

Definition

Consider operator-valued 1-form $\omega_A(z) = -(A-z)^{-1}dz$. For $x \in \mathcal{H}$ with ||x|| = 1, let ϕ_x be the vector state on \mathcal{B} such that $\phi_x(A) = \langle Ax, x \rangle$, $A \in \mathcal{B}$.

Define metric g_x through

$$g_{x}(z)dz \wedge d\bar{z} = \phi_{x}(\omega_{A}^{*}(z) \wedge \omega_{A}(z)) = \|(A-z)^{-1}x\|^{2}dz \wedge d\bar{z}.$$

Notes:

- 1. g_x defines a non-Euclidean metric on $\rho(A)$ that may have singularities at $\sigma(A)$.
- 2. g_x depends on A and x.

- If A(z) = A zI, then $\omega_A(z) = -(A zI)^{-1}dz$.
- ▶ Maurer-Cartan form $g^{-1}dg$.
- For a linear functional ϕ on \mathcal{B} , $\phi(\omega_A(z)) = \sum_{j=1}^n \phi(A^{-1}(z)A_j)dz_j$ is a holomorphic 1-form on $P^c(A)$. For a k-linear functional F, $\kappa(F) := F(\omega_A(z), \ \omega_A(z), \ ..., \ \omega(z))$ is a holomorphic k-form on $P^c(A)$.

Definition. A k-linear functional F on \mathcal{B} is said to be invariant if

$$F(a_1,\ a_2,\ ,\ ...,\ a_k)=F(ga_1g^{-1},\ ga_2g^{-1},\ ...,\ ga_kg^{-1})$$

for all a_1, a_2, \dots, a_k in \mathcal{B} and every invertible $g \in \mathcal{B}$.

Definition. A k-linear functional F on \mathcal{B} is said to be invariant if

$$F(a_1, a_2, , ..., a_k) = F(ga_1g^{-1}, ga_2g^{-1}, ..., ga_kg^{-1})$$

for all a_1, a_2, \dots, a_k in \mathcal{B} and every invertible $g \in \mathcal{B}$.

Proposition

If the k-linear functional F is invariant, then $\phi(\omega_A(z), \omega_A(z), ..., \omega_A(z))$ is closed.

Hochschild q-cochain: (q+1)-linear functionals ϕ on \mathcal{B} . ϕ is a *cyclic cocycle* if for all elements $a_0, a_1, ..., a_q$ in \mathcal{B} ,

(1)
$$\phi(a_0, a_1, ..., a_q) = (-1)^q \phi(a_q, a_0, ..., a_{q-1})$$
, and (2) $(b\phi) := \sum_{j=0}^q (-1)^j \phi(a_0, ..., a_j a_{j+1}, ..., a_{q+1}) + (-1)^{q+1} \phi(a_{q+1} a_0, a_1, ..., a_q) = 0$,

 $HC^q(\mathcal{B})$: the space of q-cyclic cocycles.

Hochschild q-cochain: (q+1)-linear functionals ϕ on \mathcal{B} . ϕ is a *cyclic cocycle* if for all elements $a_0, a_1, ..., a_q$ in \mathcal{B} ,

(1)
$$\phi(a_0, a_1, ..., a_q) = (-1)^q \phi(a_q, a_0, ..., a_{q-1})$$
, and
(2) $(b\phi) := \sum_{j=0}^q (-1)^j \phi(a_0, ..., a_j a_{j+1}, ..., a_{q+1}) + (-1)^{q+1} \phi(a_{q+1} a_0, a_1, ..., a_q) = 0$,

 $HC^q(\mathcal{B})$: the space of q-cyclic cocycles.

Proposition

(Cade and Y., 2012) Let $\mathcal B$ be a topological algebra and ϕ be a continuous cyclic q-cocycle on $\mathcal B$. Then for any tuple A, $\kappa(\phi):=\phi(\omega_A(z),\omega_A(z),\ ...,\omega_A(z))$ is a closed holomorphic q+1 form on $P^c(A)$. In fact,

$$\frac{q}{q+1}\kappa(b\phi)=-d\kappa(\phi).$$

▶ Let $\mathcal{B} = M_k(\mathbb{C})$. Then Jacobi's formula: $Tr(\omega_A(z)) = d \log \det A(z)$, $z \in P^c(A)$.

- Let $\mathcal{B} = M_k(\mathbb{C})$. Then Jacobi's formula: $Tr(\omega_A(z)) = d \log \det A(z), \quad z \in P^c(A)$.
- ▶ If \mathcal{B} is a topological algebra with a continuous trace tr, then for q even

$$\phi(a_0, a_1, a_2, ..., a_q) := tr(a_0 a_1 a_2 \cdots a_q)$$

is a cyclic *q*-cocycle, and $tr(\omega^{q+1}A(z))$ is closed.

- ▶ Let $\mathcal{B} = M_k(\mathbb{C})$. Then Jacobi's formula: $Tr(\omega_A(z)) = d \log \det A(z)$, $z \in P^c(A)$.
- ▶ If \mathcal{B} is a topological algebra with a continuous trace tr, then for q even

$$\phi(a_0, a_1, a_2, ..., a_q) := tr(a_0 a_1 a_2 \cdots a_q)$$

is a cyclic *q*-cocycle, and $tr(\omega^{q+1}A(z))$ is closed.

• $tr(\omega^3 A(z))$: Chern-Simons forms.

- ▶ Let $\mathcal{B} = M_k(\mathbb{C})$. Then Jacobi's formula: $Tr(\omega_A(z)) = d \log \det A(z)$, $z \in P^c(A)$.
- ▶ If \mathcal{B} is a topological algebra with a continuous trace tr, then for q even

$$\phi(a_0, a_1, a_2, ..., a_q) := tr(a_0 a_1 a_2 \cdots a_q)$$

is a cyclic *q*-cocycle, and $tr(\omega^{q+1}A(z))$ is closed.

• $tr(\omega^3 A(z))$: Chern-Simons forms.

Proposition

(Cade and Y., 2009) If A is a 4-tuple in a Banachl algebra with a continuous trace tr, then $tr(\omega_A^3) = \phi(z)S(z)$, where $S(z) = z_1dz_2dz_3dz_4 - z_2dz_1dz_3dz_4 + z_3dz_1dz_2dz_4 - z_4dz_1dz_2dz_3$, and $\phi(z)$ is a holomorphic function on $P^c(A)$. (A higher order form of Jacobi's formula!)

←□ > ←□ > ←필 > ←필 > ← 필 = ∽ < ○</p>

On $M_2(\mathbb{C})$

Let $A_1 = I$ and A_2 , A_3 , A_4 be the Pauli matrices.

$$A(z) = \sum_{k=1}^{4} z_k A_k$$
, and $\omega_A(z) = A^{-1}(z) dA(z)$.

Then

1)
$$P(A) = \{z \in \mathbb{C}^4 : z_1^2 - z_2^2 - z_3^2 - z_4^2 = 0\}.$$

2)
$$P^c(A) \cong GL(2, \mathbb{C}).$$

3)
$$Tr(\omega_A^3(z)) = 12iD^{-2}S(z)$$
, where $D = z_1^2 - z_2^2 - z_3^2 - z_4^2$.

4)
$$SU(2, \mathbb{C})) \cong S^3 = \{(x_1, ix_2, ix_3, ix_4) : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\},$$
 and $Tr(\omega_A^3(z))|_{M} = -12S(x)$ is the standard 3-form on S^3 .