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Spectrum

B: a unital Banach algebra over C with unit I , a ∈ B.

spectrum σ(a) = {z ∈ C : a− zI not invertible in B.}
I Conventional point of view: σ(a) is a reflects a.

I A different point of view: σ(a) is a reflects how a and I
interact.

I linear pencil : A1 − λA2;

I multiparameter pencil: A(z) = z1A1 + z2A2 + · · ·+ znAn;
(algebraic geometry, differential equations, group theory, math
physics, etc.)
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Joint spectra
A1, A2, ..., An: elements in B.

Problem. How to define a joint spectrum for these elements?

Preferred properties:
1. Reflects joint behavior of the elements.
2. Reflects interaction of the elements.
3. Reflects algebraic properties of the elements, if any.
4. Computable in many examples.

Known joint spectra:

I 70s, Taylor’s spectrum for commuting operators: invertibility
of (A1 − λ1I ,A2 − λ2I , ...,An − λnI ) through the exactness of
Koszul complex.

I 70s, Harte spectrum: invertibility of
∑

Bk(Ak − λk I ).

I 80s, HcIntosh-Pryde spectrum: invertibility of
∑

(Ak − λk I )2



Projective spectrum

Let A(z) = z1A1 + z2A2 + · · ·+ znAn.

Projective joint spectrum:
P(A) = {z ∈ Cn : A(z) is not invertible in B.}
p(A) = {z = [z1, z2, ..., zn] ∈ Pn−1 : A(z) is not invertible in B.}

Projective resolvent sets: Pc(A) in Cn, pc(A) in Pn−1.

Features:
1. symmetry: A1, ...,An are treated equally.
2. base-free: parameter is assigned to each Aj . ”I can help but I
am not central”.
3. generality: applicable to noncommuting operators.
4. computability: easy to compute in many examples.
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Examples

I 1. Let B = M2(C), A0 = I and A1 = iσ1, A2 = iσ2,A3 = iσ3,
where σi are the Pauli matrices, i.e.,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then su(2) = span{A1,A2,A3}. And
p(A) = {z ∈ P3 : z2

0 + z2
1 + z2

2 + z2
3 = 0} is a compact

algebraic manifold.

I 2 [Bannon, Cade, Y., 2013]. Free group Fn with generators
{g1, g2, · · · , gn}, and let λ be the regular representation of Fn

on `2(Fn). Set A(z) = z1λ(g1) + · · ·+ znλ(gn)), then

P(A) =
n⋂

j=1

Rj ,

where Rj = {z ∈ Cn : 2|zj |2 ≤ ‖z‖2}, j = 1, 2, · · · , n.
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I 3 [He, Wang, Y., 2017]. The Cuntz algebra On is the universal
C ∗-algebra generated by n isometries S1, S2, . . . ,Sn satisfying

n∑
i=1

SiS
∗
i = I and S∗i Sj = δij I for 1 ≤ i , j ≤ n.

Let S(z) = z1S1 + · · · znSn and S∗(z) = I + S(z). Then it is
shown in that
(a) P(S) = Cn.
(b) Pc(S∗) is equal to the unit ball Bn = {z ∈ Cn : ‖z‖ < 1}.

I 4 [Stessin, Y., Zhu, 2011; He, Wang, Y., 2017]. If
A∗(z) = I + z1A1 + · · ·+ znAn, where Aj are compact
operators on a Hilbert space, then
(i) P(A∗) is a thin set.
(ii) When P(A∗) is smooth, then EA =

∨
z∈P(A∗)

Ker A∗(z) is
a holomorphic line bundle (kernel bundle) over P(A∗).
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Finitely generated groups

G =< g1, g2, · · · , gn | · · · >, ρ : G → U(H) a unitary
representation.
Set Aρ(z) = z0I + z1ρ(g1) + · · ·+ znρ(gn).

Example: If 1G : G → 1 is the trivial representation, then
P(A1G ) = {z0 + z1 + · · ·+ zn = 0} := H1.

Theorem (Y.)

Let λG : G → `2(G ) be the left regular representation. Then G is
amenable if and only if P(Aλ) contains the hyperplane H1.

Proposition

If ρ and π are weakly equivalent unitary representations, then
P(Aρ) = P(Aπ).

Problem: Does the converse hold for irreducible representations?
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Infinite dihedral group D∞ =< a, t | a2 = t2 = 1 >
For a fixed θ ∈ [0, 2π), consider two-dimensional representation ρθ
given by

ρθ(a) =

[
0 e iθ

e−iθ 0

]
, ρθ(t) =

[
0 1
1 0

]
.

Known: every irreducible repr. of D∞ is either one dimensional or
two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D∞ is of the form ρθ for
some θ ∈ (0, π).

Fact: P(Aρθ) = {z ∈ C3 : z2
0 − z2

1 − z2
2 − 2z1z2 cos θ = 0}.

Theorem (Grigorchuk, Y., 2017)

If λ : D∞ −→ U(l2(D∞)) is the left regular representation, then

P(Aλ) =
⋃

0≤θ<2π

P(Aρθ).
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Proof

The left regular representation of D∞ is equivalent to the following
representation λ of D∞ on L2(T, dθ

2π )⊕ L2(T, dθ
2π ):

λ(a) =

[
0 T

T ∗ 0

]
, λ(t) =

[
0 I0
I0 0

]
,

where T is the bilateral shift operator L2(T), i.e.,

Tf (e iθ) = e iθf (e iθ). If we let T =

∫ 2π

0
e iθdE (e iθ). Then

λ(a) =

∫ 2π

0

[
0 e iθ

e−iθ 0

]
dE (e iθ) =

∫ 2π

0
ρθ(a)dE (e iθ);

λ(t) =

∫ 2π

0

[
0 1
1 0

]
dE (e iθ) =

∫ 2π

0
ρθ(t)dE (e iθ).



Group of intermediate growth
Let S = {g1, ..., gn} be a symmetric generating set of group G .
Word length: |x | = min{k |x = x1x2 · · · xk , xj ∈ S}, |e| = 0.
Set Br (G ) = {x ∈ G ||x | ≤ r}, r ≥ 0.

I G has polynomial growth if |Br | ≤ αrβ for some fixed
α, β > 0.

I G has exponential growth if |Br | ≥ αβr for some fixed
α > 0, β > 1.

I Milnor’s question (60s): Is there a group of intermediate
growth.

Grigorchuk (80, 84): Yes! G =< a, b, c , d >, where

a2 = b2 = c2 = d2 = bcd = 1

σk((ad)4) = σk((adacac)4) = 1, k = 0, 1, 2, · · · ,

where σ : a→ aca, b → d , c → b, d → c is a substitution.
(e
√
r ≺ |(Br (G)| ≺ e0.991).
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Theorem (Grigorchuk, Y., 2017)

Let ρ : G → L2(T ) be the Koopman repr., where T is the rooted
binary tree, and let M = 1

4

(
ρ(a) + ρ(b) + ρ(c) + ρ(d)

)
be the

Markov operator of G. Then σ(M) = [−1
2 , 0] ∪ [12 , 1].

Pf.
1. Set u = b+c+d−1

2 ∈ C[G] and observe u2 = 1.

2. Prove that < a, u > is isomorphic to D∞.

3. Prove that Koopman repr. and the regular repr. of D∞ are
weakly equivalent.

4. Write M − αI = (14 − α)I + 1
4ρ(a) + 1

2ρ(u) and use the
projective spectrum of D∞.
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Hermitian metric on Pc(A) (with Douglas), preliminary

B: unital C ∗-alg., A1, ...,An ∈ B, φ ∈ B∗.
ωA(z) := A−1(z)dA(z) =

∑
j A−1(z)Ajdzj , z ∈ Pc(A).

Fundamental form: ΩA(z) = −ω∗A ∧ ωA.

φ(ΩA(z)) = −φ(ω∗A ∧ ωA)

= φ[A∗k(A−1(z))∗A−1(z)Aj ]dzj ∧ dz̄k

:= gjk(z)dzj ∧ dz̄k , z ∈ Pc(A).

Observe: When gφ(z) :=
(
gjk(z)

)
is positive definite on Pc(A), it

defines an inner product on the holomorphic tangent bundle of
Pc(A) through ( ∂

∂zj
, ∂
∂zk

)z = gjk(z).

Theorem
Let φ be a state on B (φ(a∗a) ≥ 0, φ(I ) = 1). Then φ(ΩA)
defines a Hermitian metric on Pc(A) if and only if φ is faithful on
span{A1, ...,An}.
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Theorem
If B = Mk(C), then Tr((ΩA) defines a complete metric on Pc(A)
for every tuple of matrices.

G =< g1, ..., gn| · · · >: finitely generated group. Let C ∗r (G ) be the
reduced C ∗-subalg. in B(`2(G )). Define linear functional
φ(a) =< aδe , δe >. Then φ is a faithful tracial state on C ∗r (G ) .

Corollary

Let Aλ(z) = z0I + z1λ(g1) + · · ·+ znλ(gn). Then φ(ΩAλ
) defines a

G -invariant Hermitian metric on Pc(Aλ).

Theorem (Goldberg, Y., 2018)

Consider D∞ and set A∗(z) = I + z1λ(a) + z2λ(t). Then the
metric defined by φ(ΩA∗) is imcomplete, and the completion
[Pc(A∗)] = C2 \ {(±1, 0), (0,±1)}.
Note: σ(λ(a)) = σ(λ(t)) = {±1}.
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Def.

I The metric on Pc(A) defined by φ(ΩA(z)) is said to be Kähler
if dφ(ΩA(z)) = 0.

I The metric on Pc(A) defined by φ(ΩA(z)) is said to be flat if

∂2

∂zj∂z̄k
log det gφ(z) = 0, ∀z ∈ Pc(A), ∀j , k .

Theorem
Let A0 = I ,A1, ...,An be elements in a C ∗-alg. B with a faithful
tracial state φ. Then φ(ΩA(z)) defines a Kähler metric on Pc(A) if
and only if A1, ...,An commute.

Example. If A1, ...,An is a basis of Mk(C) (n = k2), then Tr(ΩA)
defines a complete, non-Kähler, flat and GLk -invariant metric on
Pc(A) ∼= GLk .
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A connection with complex dynamics

Def. A unitary representation (π, H) is self-similar if there exists a
d ∈ N and a unitary map W : H → Hd such that for all g ∈ G
every entry in the d × d block matrix Wπ(g)W ∗ is either 0 or of
the form π(x) for some x ∈ G . Observe that in this case exactly
one entry in every row or column of Wπ(g)W ∗ is nonzero.

Facts:

I The Koopman repr. ρ of D∞ is self-similar. In fact,

ρ(a) ∼=
[

0 I
I 0

]
, ρ(t) ∼=

[
ρ(a) 0

0 ρ(t)

]
,

hence

Aρ(z) = z0 + z1ρ(a) + z2ρ(t) ∼=
[

z0 + z2ρ(a) z1
z1 z0 + z2ρ(t)

]
.

I ρ is weakly equivalent to λ, hence P(Aρ) = P(Aλ).
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When z0 6= ±z2, Aρ(z) is invertible if and only if
z0 + z2t − z2

1 (z0 − z2a)(z2
0 − z2

2 )−1 is invertible. Define

F (z0, z1, z2) =

(
z0(z2

0 − z2
1 − z2

2 ), z2
1 z2, z2(z2

0 − z2
2 )

)
.

Lem: F : P(Aλ)→ P(Aλ).

Consider F : P2 → P2. Denote the n-th iteration of F by F n.

Def.

I Indeterminacy sets: In = {z ∈ P2|F n(z) = (0, 0, 0)}, n ≥ 1.

I Extended indeterminacy set: E = ∪n≥1In.

I Fatou point: z has a nbd. Vz such that {F n} is a normal
family on Vz .

I Fatou set F(F ): the set of Fatou points for F .

I Julia set J (F ): P2 \ F(F ).
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Let T (x) = 2x2 − 1, x ∈ Ĉ (Chebyshev poly.).

τ(z) =
z20−z21−z22

2z1z2
: P2 → Ĉ. Note: z ∈ p(Aλ) iff τ(z) /∈ [−1, 1].

Fact: J (T ) = [−1, 1].

Theorem (Grigorchuk, Y., 2017)

The following diagram commutes:

P2 \ I1
F //

τ
��

P2

τ
��

Ĉ T // Ĉ.
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the Julia set

For z ∈ pc(Aλ), define
fn(z) = 1

2τ(z) + 1
22T (τ(z))τ(z)

+ · · · 1
2n−1T n−1(τ(z))···T (τ(z))τ(z)

.

Lemma (Goldberg, Y.)

(a) {fn} converges normally (to f ) on pc(Aλ).
(b) In+1 ⊂ {z2 = ±z0 + z1fn(z)}.
(c) limn F n(z) = [z0 : 0 : z2 + z1f (z)], z ∈ pc(A) \ E

Theorem (Goldberg, Y.)

Consider the map F : P2 → P2 derived from the self-similarity of
the Koopman repr. of D∞. Then J (F ) = p(Aλ) ∪ E .
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Definition

Consider operator-valued 1-form ωA(z) = −(A− z)−1dz .
For x ∈ H with ‖x‖ = 1, let φx be the vector state on B such that
φx(A) =< Ax , x >, A ∈ B.

Define metric gx through

gx(z)dz ∧ dz̄ = φx
(
ω∗A(z) ∧ ωA(z)

)
= ‖(A− z)−1x‖2dz ∧ dz̄ .

Notes:
1. gx defines a non-Euclidean metric on ρ(A) that may have
singularities at σ(A).
2. gx depends on A and x .
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I If A(z) = A− zI , then ωA(z) = −(A− zI )−1dz .

I Maurer-Cartan form g−1dg .

I For a linear functional φ on B,
φ(ωA(z)) =

∑n
j=1 φ(A−1(z)Aj)dzj is a holomorphic 1-form on

Pc(A). For a k-linear functional F ,
κ(F ) := F (ωA(z), ωA(z), ..., ω(z)) is a holomorphic k-form
on Pc(A).



Definition. A k-linear functional F on B is said to be invariant if

F (a1, a2, , ..., ak) = F (ga1g−1, ga2g−1, ..., gakg−1)

for all a1, a2, , ..., ak in B and every invertible g ∈ B.

Proposition

If the k-linear functional F is invariant, then
φ(ωA(z), ωA(z), ..., ωA(z)) is closed.
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Hochschild q-cochain: (q + 1)-linear functionals φ on B.
φ is a cyclic cocycle if for all elements a0, a1, ..., aq in B,

(1) φ(a0, a1, ..., aq) = (−1)qφ(aq, a0, ..., aq−1), and
(2) (bφ) :=

∑q
j=0(−1)jφ(a0, ..., ajaj+1, ..., aq+1) +

(−1)q+1φ(aq+1a0, a1, ..., aq) = 0,

HCq(B): the space of q-cyclic cocycles.

Proposition

(Cade and Y., 2012) Let B be a topological algebra and φ be a
continuous cyclic q-cocycle on B. Then for any tuple A,
κ(φ) := φ(ωA(z), ωA(z), ..., ωA(z)) is a closed holomorphic q + 1
form on Pc(A). In fact,

q

q + 1
κ(bφ) = −dκ(φ).
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Examples

I Let B = Mk(C). Then Jacobi’s formula:
Tr(ωA(z)) = d log detA(z), z ∈ Pc(A).

I If B is a topological algebra with a continuous trace tr , then
for q even

φ(a0, a1, a2, ..., aq) := tr(a0a1a2 · · · aq)

is a cyclic q-cocycle, and tr(ωq+1A(z)) is closed.

I tr(ω3A(z)): Chern-Simons forms.

Proposition

(Cade and Y., 2009) If A is a 4-tuple in a Banachl algebra with a
continuous trace tr , then tr(ω3

A) = φ(z)S(z), where
S(z) = z1dz2dz3dz4 − z2dz1dz3dz4 + z3dz1dz2dz4 − z4dz1dz2dz3,
and φ(z) is a holomorphic function on Pc(A).

(A higher order form of Jacobi’s formula!)
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On M2(C)

Let A1 = I and A2, A3, A4 be the Pauli matrices.

A(z) =
4∑

k=1

zkAk , and ωA(z) = A−1(z)dA(z).

Then
1) P(A) = {z ∈ C4 : z2

1 − z2
2 − z2

3 − z2
4 = 0}.

2) Pc(A) ∼= GL(2, C).
3) Tr(ω3

A(z)) = 12iD−2S(z), where D = z2
1 − z2

2 − z2
3 − z2

4 .
4) SU(2, C)) ∼= S3 = {(x1, ix2, ix3, ix4) : x2

1 + x2
2 + x2

3 + x2
4 = 1},

and Tr(ω3
A(z))|M = −12S(x) is the standard 3-form on S3.


