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The plan for today

Quantum Walks as simulators for solid state
Topological insulators: interesting Hamiltonians to simulate
Extra topological invariants of quantum walks

Two methods to measure topological invariants, with
disorder:

- Using scattering matrices

- Using weak measurement & expected displacement






Quantum Walks as simulators for solid state
Topological insulators: interesting Hamiltonians to simulate



Band insulator: has bulk energy gap separating fully
occupied bands from fully empty ones

[:] — E H @T % (includes superconductors in mean-field,
ot zE! Tyt using Bogoliubov-de Gennes trick)
xx’

edge region: low energy electrons confined here

translation invariant bulk

Bulk:
H (k) -simple, can be clean,
-most of the energy states
-decides insulator/conductor
S 21 Boundary/edge:
Yi(x) plane -disordered

waves -few of the energy states
: -can hinder contact

¥(x) have evanescent tails into the bulk



Topological Insulator: has protected, extended midgap
states on surface, which lead to robust, quantized physics

edge region: low energy electrons confined here

translation invariant bulk

WYi(x) plcm—e | ‘
waves :

¥(x) have evanescent tails into the bulk



(b)

conducting states
yh — no backscattering

Lﬁ

(d )

w T2 0 /2 - 4 5 6 7
wavenumber £k, cell index m

2D Chern Insulators: 1-way

— perfect edge conduction

density |¢|*



*“Why call them Topological Insulators?”
a) Robust physics at the edge (e.g., 2D: conductance
via edge state channels) quantified by small integers

1D, quantum wire:
# of topologically protected
O-energy states at ends of wire

3D:
# of Dirac cones on surface

Cannot change by continuous deformation that

leaves bulk insulating
— TOPOLOGICAL INVARIANT



*“Why call them Topological Insulators?”
b) Bulk description has a topological invariant, generalized
“winding” in Brillouin Zone

A

H(k) = h(k)e

Example: 2D, two levels:

Mapping from d-dimensional torus to Bloch sphere

More general 2D: Chern number of

\ 1¢|~ um (k) occupied bands
ks "‘ﬁ I?', [ ‘.' f / y .J.: 1 .
QL AR = —i(n(k) O, n(k))

Fi (k) = 0k, AJY — 0y, ALY

Brillouin Zone N el O ZL d’kF (k)
m JBZ




Central, beautiful idea of Topological Insulators:
Bulk—boundary correspondence:
“‘winding number” of bulk = # of edge states

Look inside ¥

painless introduction: lecture notes Lecture Notes in Physics 919

Janos K. Asbéth

weeks 1-5:  gather tools, build intuition, 1D ii;:gsﬂgﬁzilénr

Central aim of the course:
week 6: prove bulk—boundary correspondence A ShOI't CourSe

on Topological

for the 2-dimensional case

weeks 7-10:  generalize/understand |n5u|at0rs

Band Structure and Edge States in One
and Two Dimensions

. @S inger
Further accessible sources: AR

- 3 lectures by Charles Kane (youtube)
- online course by Akhmerov&friends topocondmat.org




Theory of topological insulators is quite
developed. Example: periodic table

Symmetry o=d-D
0?2 =2 I1? 0 1 2 3 4 5 6 7
0 0 0 Z 0 (7,) 0 Z 0 Z 0
0 0 1 0 0 7 0 7 0 7
1 0 0 7 0 0 0 27, 0 A 7
1 1 1 7y 7, 0 0 0 27, 0 7y
0 1 0 7 7 0 0 0 27 0
-1 1 1 0 7oy 7y 7, 0 0 0 27,
-1 0 0 27, 0 7, 7, 7 0 0 0
-1 -1 1 0 27, 0 7, A 7 0 0
0 -1 0 0 0 27, 0 7, 7 7 0
1 -1 1 0 0 0 27, 0 7 A 7

Kitaev (AIP Conf.Proc 2009)

Schnyder et al, NJP (2010)
Teo & Kane, PRB (2010)
Fulga et al, PRB (2012)



Quantum Walks can simulate Topological
Insulators. They can be similar to a solid

split-step quantum walk on cubic lattice (3D, 2D, 1D)

Element 1: coin- (spin-) dependent shift,

A | So = |r+en, Nt +[r—es x|
Pl 13 (7l W Ol B Ul B rez?
< / : / . / ‘ /' Element 2: unitary rotation of coin (spin)
v / / / | Siay _ifs, _ 3 cos —sinb
Y /t ;r / P R(0) = Z\r><r|®e =19 sinf  cosf
: . - : / SYA
// // // /r/ Timestep operator:
s il {7 = 8. 135, R, I,

Quantum Walk discrete time evolution:

W(t)) = UY¥(0)), with teN



Quantum Walk can simulate topological insulators via the
(Floquet) Hamiltonian H_ . This gives intuition, e.g. for

speedup of spread (ballistic)

Long-time behaviour: eigenstates of timestep operator U
Translation invariant “bulk”: momentum k good quantum number

A A

[ = RSy Ry = e o7 =020 g=ihats o=itioy [ — i1og [

(1)) = U |W(0)) = e~ ettt | W (0))

Stroboscopic simulation of time-independent Heff
(coincide at integer times t)

Eigenstates of the walk are eigenstates of Heff %
@
Explains ballistic spread <

-t ] | |

-Tl -2 0 w2 T
wavenumber k
Discrete time = quasienergy, restricted Discrete positions = quasimomentum,

to energy Brillouin zone: —-7<E<w restricted to Brillouin zone: —7 <k <=



Kitagawa et al, 2010: recipes for quantum walks to
simulate topological insulators via Heff

Bl @ ||

: 1. Rotate * 91
' L)

2. Translate * Spin up

® ®

3. Rotate * 92

Position Position

Recipes in 1D, 2D: how to realize all symmetry classes

[Kitagawa, Rudner, Berg, Demler, PRA (2010)] = 233 citations



Experiment, 2011 (White's group):
1-D split-step quantum walk on photons ...

1-D split-step quantum walk, create interface by tuning 6,

[Kitagawa et al, Nat Comm (2012)]



Extra topological invariants of quantum walks



Experiment, 2011 (White's group):
1-D split-step quantum walk on photons ...

1-D split-step quantum walk, create interface by tuning 6,

[Kitagawa et al, Nat Comm (2012)]



... experiment saw edge states where theory did
not predict them

C
E, Pair of bound states at
T —i quasienergy 0 and 7t
OFe protected, but not
: I Bulk predicted
states
_-'I'..T —
b cases @ |H Case5 ¢ |H) ]-:DD
1
o 3 What is the bulk
5 topological invariant?
7
Hl Experiment
0.51 — Theory
=
E
F
E :
-y 3 3 7 7 3 3 7 :
Lattice Position Lattice Position [K'tagawa et al’ Nat Comm (2012)]



Kitagawa, 2011: protected edge state in 2-
dimensional quantum walk, no bulk topological
invariant

2-D split-step quantum walk has edge states at interface,
even though Chern number =0

U = gyRng.Rl éj = e_wj&y/Q

Gap closes at O and &

N 0y Elk:) 0

[Kitagawa, Quantum Information Processing (2012)] k:];

What is the bulk topological invariant?



We found the bulk topological invariant for both
mysterious types of edge states

1-dimensional chiral symmetric quantum walks:
2 topological invariants

[Asboth & Obuse Phys Rev B (2013)]
[Asboth, Tarasinski, Delplace, Phys Rev B (2014)]

(b)

2-dimensional quantum walks without symmetry:

[Asboth & Edge, Phys Rev A (2015)]

by mapping to model of Rudner et al, Phys. Rev. X (2013)

- affects localization in 2D quantum walks [Edge & Asboth, Phys Rev B (2015)]

f (k)

- can be measured by pseudomagnetic field [Asboth & Alberti, Phys Rev Lett (2017)]

B

Quasi-Energy

Chiral edge modes

for C = 0 bands
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Two methods to measure topological invariants, with
disorder:

- Using scattering matrices

- Using weak measurement & expected displacement

Scattering theory of topological phases in discrete-time quantum walks
B Tarasinski, JK Asboéth, JP Dahlhaus, Phys Rev A (2014)

Detecting topological invariants in chiral symmetric insulators via losses
T Rakovszky, JK Asbéth, A Alberti, Phys Rev B (2017)



Two methods to measure topological invariants, with
disorder:
- Using scattering matrices

Scattering theory of topological phases in discrete-time quantum walks
B Tarasinski, JK Asboéth, JP Dahlhaus, Phys Rev A (2014)



First method, borrowed from Hamiltonians:
measure the scattering matrix

Metal r t
. . 1% (t fr’)

Are there bound states at zero Does an electron interfere constructively
energy between the two insulators? with itself? Bohr-Sommerfeld quantization

det(1 — ryrrr) =0

Simple formulas for all symmetry classes in 1D
[Fulga, Hassler, Akhmerov, Beenakker, Phys. Rev. B (2011)]

Generalizes via dimensional reduction to all dimensions, symmetry classes
[Fulga, Hassler, Akhmerov, Phys. Rev. B (2012)]



To define the scattering matrix, the system needs
to be “opened up”

1) Open up the system
2) Attach leads P L@ |
3) Define scattering matrix S | | D

Mahaux-Weidemiiller formula for
continuous-time sytems:

S =14 27iWH(H —izWWTH)~1W.

Rewritten for discrete-time systems by
Fyodorov&Sommers:

S(e) = o,e" |wo



Can be transcribed to quantum walk on beam
splitter array

° Measure
=0 1=1 T1=2 T1=3 T1=4 1=5 1=6 T1=7 T=8 .y transmission

Measure
reflection

L

Introduce light from one edge at every timestep ><T*‘x

— Measure reflection after transients

Introduce light only at t=0, > .
— Measure reflection at every t fr(g) — Z emr(fr)

[B Tarasinski, JK Asbéth, JP Dahlhaus, Phys Rev A (2014)] 7=0



Experiment using our proposal:
2017, Silberhorn group

> Previously demostrated:

fluctuating disorder
\& ’ % — diffusion
= time-independent disorder

step operation § - lection unik — Anderson localization

, Uutcoupler\ [SCthiber et aI, PRL (201 1)]
' N
—0—@——,‘ ~ incoupler Ea I

input polarization < y

coin operation

- Implemented scattering setup

- Quantized reflection amplitudes

- Also with time-independent _
disorder (localized) <

- Transition smoothened by 5
finite sampling time

[Barkhofen et al, Phys. Rev. A (2017)




Two methods to measure topological invariants, with
disorder:

- Using weak measurement & expected displacement

Detecting topological invariants in chiral symmetric insulators via losses
T Rakovszky, JK Asbéth, A Alberti, Phys Rev B (2017)



Second method, generalizing results of
Rudner & Levitov about non-Hermitian SSH model

B S A

L L—1 L
H=v Z(]m,B)(m,A\ + h.c.) +w Z im, B)(m + 1, A| + h.c.) — i~y Z im, B)(m, B|
m=1 m=1
—‘ \— Lecture Notes in Physics 919
y=0 : Su-Schrieffer-Heeger (SSH) model for polyacetylene (1979) el
mother of all topological insulators Andris Palyi

A Short Course

v>0 : added by Rudner & Levitov to represent losses
— Nonhermitian Hamiltonian for conditional time evolution.
Condition: no decay events.

on Topological
Insulators

Band-Stiicture and Edge States in One

Norm of wavefunction = prob(condition holds) e

[Rudner and Levitov, Phys. Rev. Lett. (2009)]



Rudner and Levitov (2009): Nonhermitian SSH,
expected displacement until decay = top. inv.

When decay happens, collect particle. Position of decay=displacement until decay

o
-
i* 'i
* *
. .
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.
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topological proof: mapping to a winding number

. Insert single particle
As at m=0, A

£

2 m = (Ax) = v
-

)

-

Site index m



Our questions

e |s Rudner & Levitov result general, or only specific to two-
band model? (Their proof only works for two-band model)

e |sitvalid for disordered systems?
 How to translate this to periodically driven systems?

A A

H(t) — H(t + 1) Uv — Te_i fol H(t)dt — e—iﬁeff

energy — quasienergy E

pair of winding numbers at E=0, E=mt [Asboth & Obuse, PRB (2013)]



The way to realize losses is by weak measurement
on sublattice B at the end of each driving cycle

=0 [/ =1 3::2._.

LLL 55 55

Effect of negative measurement: M — pA + \/1 — DM PB
4

(particle not detected) /

Measurement efficiency



Continue time evolution until particle is detected

Conditional wavefunction:

MZﬁA+\/1—pMﬁB

Static case: period time — 0, pps — 0



Expected displacement
(Ax)= topological invariant u/N

Expectation value of measured position:

k-390 3D Db oI (YU TIE )

tcZt x€Z b=N+1a=1

(x) —xg =V/N

Translation invariance =) (Ax)

—_
—
f—

o

il (z) = 1.0000
I oo} '
0.0 @ s |

é 10

_l—”]{ —o 0.0 0.5 1.0 40 45 : I_.';l_l B i)
Re det Upy Position x

Im det Ugy
=
X

L
e
g |

detection probahility s, (f)




In the disordered case, averaging over initial
position is needed: ({Ax))=u/N

Disorder Displacement depends on starting position

So let’s average over them!

(Az)) = 7 3 (Aa)e,

Lo

Average displacement {Aa)

1

2 s

3'D -:r'-’-'l /2 - uT"—_L "
DlHUl(].fl tuu 1h n

Most general statement:

(82)) = —Tr {XCPips)} = =




We proved ({AXx))=u using non-commutative
geometry formulation of winding number

Noncommutative geometry for topological insulators: Lori & Hastings, Prodan
for chiral symmetric (Alll): Mondragon-Shem et al, PRL (2014)

—(R’f)” 2n+1
B (2n + I)HZ(—U"T{ :1]1: Q—+[Xﬂf‘ Q+]}

Fe

Used this before on quantum walk, compared to scattering formulation of topological
invariant [Rakovszky & Asboth, PRA (2015)]



Fast readout can require weak measurement, if
almost-dark states are present

Average dwell time:

, T F 21 —
(1)) = PM : / ;0(2 ) dE 42V = Pm
(].—f—-\f]. —;Uj\,f) JE=0 sin® E P PM

() pa=1 =7

() min = V27 for 7> 1

1L . ! Py = A/8/T

1077 10~ 107" 1
Measurement probability py;

Average dwell time ({t))




Experiment using our proposal:
2017, Peng Xue's group

week ending

PRL 119, 130501 (2017) PHYSICAL REVIEW LETTERS 29 SEPTEMBER 2017

Detecting Topological Invariants in Nonunitary Discrete-Time Quantum Walks

Xiang Zha_n,1 Lei Xiao,l Zhihao Bian,1 Kunkun Wa_ng,l Xingze Qiu,z’?’ Barry C. Sann:ln:r:«;,?”dt’s’*5 Wei Yi,z’?”* and Peng Xue""!
l & ‘o _ 0. _ . _a rr : | AT = -

™o B A AT e - AT T Iy s -

Step 2 Step 7

. B-barium-borate crystal o Half-wave plate (HWP)

. Short pass-filter
Beam displacer (BD)

' Interference filter

W Mirror - Partially polarizing beam splitter (PPBS)




Topological invariants using displacement:
Open questions, related work

 Does something like this work in 3 dimensions?

 Massignan & collaborators have since found similar
results for (Ax) defined for Hermitian Hamiltonians, in
long-time limit. Precise equivalence?

1. arXiv:1802.02109 [pdf, other]

Observation of the topological Anderson insulator in disordered atomic wires

Eric J. Meier, Fangzhao Alex An, Alexandre Dauphin, Maria Maffei, Pietro Massignan, Taylor L. Hughes, Bryce Gadway
Comments: 6 pages, 3 figures; 9 pages of supplementary materials

Subjects: Quantum Gases (cond-mat.quant-gas); Disordered Systems and Neural Networks (cond-mat.dis-nn); Quantum Physics (quant-ph)

2. arXiv:1708.02778 [pdf, other]

Topological characterization of chiral models through their long time dynamics

Maria Maffei, Alexandre Dauphin, Filippo Cardano, Maciej Lewenstein, Pietro Massignan

Journal-ref: New J. Phys. 20, 013023 (2018)

Subjects: Other Condensed Matter (cond-mat.other); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Quantum Gases (cond-mat.quant-gas); Quantum Physics (quant-ph)

3. arXiv:1610.06322 [pdf, other]

Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

F. Cardano, A. D'Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, P. Massignan
Comments: 10 pages, 7 color figures (incl. appendices) Close to the published version

Journal-ref: Nature Commun. 8, 15516 (2017)

Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Quantum Gases (cond-mat.quant-gas); Optics (physics.optics); Quantum Physics (quant-ph)



Summary of this talk

« Quantum Walks as simulators for solid state

Topological insulators: interesting Hamiltonians to
simulate

e Extra topological invariants of quantum walks

 Two methods to measure topological invariants, with
disorder:
- Using scattering matrices
- Using weak measurement & expected displacement

Scattering theory of topological phases in discrete-time quantum walks
B Tarasinski, JK Asboéth, JP Dahlhaus, Phys Rev A (2014)

Detecting topological invariants in chiral symmetric insulators via losses
T Rakovszky, JK Asboth, A Alberti, Phys Rev B (2017)



My collaborators on these projects
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Andrea Alberti, Tibor Rakovszky, Brian Tarasinski, Jan Dahlhaus,
Uni Bonn TU Miinchen QuTech Delft project manager,
Munchen
Currently funded by: National Research,
Development and Innovation Office of Hungary,
— FK 124723: From Topologically Protected =
States to Topological Quantum Computation =
% National Quantum TeChnOIOgy Program’ NATIONALRESEA];CH. DEVELOPMENT
2017-1.2.1-NKP-2017-00001 SN e
Preparation and distribution of quantum bits, =%
and development of quantum networks PROJECT FINANCED

FROM THE NRDI FUND

W H U N Q U T E C H MOMENTUM OF INNOVATION



