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(M, g) smooth closed connected n-dimensional Riemannian
manifold,

X ∈ C∞(M,TM) smooth vector field generating a transitive
Anosov flow (ϕt)t∈R, i.e. such that there exists a continuous
flow-invariant splitting

TM = Es ⊕ Eu ⊕ RX ,

with:

‖dϕt(v)‖ ≤ Ce−λt‖v‖, ∀v ∈ Es ,∀t ≥ 0,

‖dϕt(v)‖ ≤ Ce−λ|t|‖v‖, ∀v ∈ Eu,∀t ≤ 0,

where the constants C , λ > 0 are uniform, ‖ · ‖ = g(·, ·)1/2,
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G set of periodic orbits.

Definition (X-ray transform)

I : C 0(M)→ `∞(G), If : G 3 γ 7→ 〈δγ , f 〉 :=
1
`(γ)

∫ `(γ)

0
f (ϕtz)dt,

where z ∈ γ, `(γ) is the period of γ.

Definition can be restricted to other regularities: Cα (Hölder), Hs

(Sobolev) for s > n
2 , ...

Question: can we describe the kernel of I on functions with
prescribed regularity?

I (Xu) = 0, for any u ∈ C∞(M); Xu is called a coboundary.
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Theorem (Livsic ’72)

Let α ∈ (0, 1). Given f ∈ Cα(M) such that If = 0, there exists
u ∈ Cα(M) such that f = Xu. Moreover, u is unique up to an additive
constant.

Classical Livsic theorem was also proved:

in smooth regularity i.e. f , u ∈ C∞(M) (de la
Llave-Marco-Moriyon ’86),
in Sobolev regularity i.e. f , u ∈ Hs(M) (Guillarmou ’17).

Other natural questions:

What if If ≥ 0 instead of If = 0? (Positive version of Livsic
theorem)

What if If ' ε (i.e. ‖If ‖`∞ := supγ∈G |If (γ)| ≤ ε)? (Approximate
Livsic theorem)

What if If (γ) = 0 for all periodic orbits γ of length `(γ) ≤ L?
(Finite Livsic theorem)
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Theorem (Lopes-Thieullen ’04, Positive Livsic theorem)

Let α ∈ (0, 1). There exists β ∈ (0, α),C > 0 such that the following
holds. Let f ∈ Cα(M) such that If ≥ 0. Then, there exists
u, h ∈ Cβ(M) such that Xu ∈ Cβ(M), h ≥ 0 and f = Xu + h. (In
particular, f ≥ Xu.) Moreover, ‖h‖Cβ + ‖Xu‖Cβ ≤ C‖f ‖Cα .
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Theorem (Gouëzel-L. ’19, Approximate Livsic theorem)

Let α ∈ (0, 1). There exists β ∈ (0, α), ν > 0 such that the following
holds. For any ε > 0 small enough, given f ∈ Cα(M) such that
‖f ‖Cα ≤ 1 and ‖If ‖`∞ ≤ ε, there exists u, h ∈ Cβ(M) such that
Xu ∈ Cβ(M), ‖h‖Cβ ≤ εν and f = Xu + h.

Theorem (Gouëzel-L. ’19, Finite Livsic theorem)

Let α ∈ (0, 1). There exists β ∈ (0, α), µ > 0 such that the following
holds. For any L > 0 large enough, given f ∈ Cα(M) such that
‖f ‖Cα ≤ 1 and If (γ) = 0 for all γ ∈ G such that `(γ) ≤ L, there exists
u, h ∈ Cβ(M) such that Xu ∈ Cβ(M), ‖h‖Cβ ≤ L−µ and f = Xu + h.
This implies that ‖If ‖`∞ ≤ L−µ.

(Second theorem is actually a corollary of the proof of the first one.)
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Idea for the first theorem: find a periodic orbit of length ε−β1 (β1 < 1)
that is εβ2-dense inM and yet εβ3-separated. Then, mimick the proof of
the classical Livsic theorem.

Σ (transverse section)

∼ "
β3
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(M, g) smooth connected closed Riemannian manifold with Anosov
geodesic flow (ϕt)t∈R on its unit tangent bundleM := SM. We call
(M, g) an Anosov Riemannian manifold.

C is the set of free homotopy classes; there exists a unique closed
geodesic in each free homotopy class c ∈ C (Klingenberg ’74). We
identify G and C.
C∞(M,⊗m

S T
∗M) is the vector-space of smooth symmetric

m-tensors (m ∈ N).
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Symmetric tensors on M can be seen as functions on the unit
tangent bundle SM, polynomial in the spheric variable. Given
m ∈ N, f ∈ C 0(M,⊗m

S T
∗M), we define π∗mf ∈ C 0(SM) by

π∗mf : (x , v) 7→ fx(v , ..., v).

Definition (Geodesic X-ray transform)

Im : C 0(M,⊗m
S T
∗M)→ `∞(C),

Imf = Iπ∗mf : C 3 c 7→ 1
`(γc)

∫ `(γc )

0
fγc (t)(γ̇c(t), ..., γ̇c(t))dt,

with γc unique closed geodesic in c .

Question: Kernel of the X-ray transform?
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Tensor decomposition:
f = Dp + h,

with D := σ ◦ ∇ (∇ Levi-Civita connexion, σ symmetrization
operator of tensors), D∗h = 0 where D∗ is the formal adjoint of D.
We call Dp the potential part and h the solenoidal part of f .
Im(Dp) = 0, that is {potential tensors} ⊂ ker Im. Im is said to be
s(olenoidal)-injective when this is an equality.

Conjecture

Im is s-injective whenever (M, g) is an Anosov Riemannian manifold.

Known results when (M, g) Anosov; Im is s-injective for:

any m ∈ N on surfaces (Paternain-Salo-Uhlmann ’14, Guillarmou
’17),
any m ∈ N in any dimension, in nonpositive curvature
(Croke-Sharafutdinov ’98),
m = 0, 1 in any dimension (Dairbekov-Sharafutdinov-11).
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Question: Once we have s-injectivity, can we obtain a stability
estimate of the form

‖f ‖H1 ≤ C‖Imf ‖H2 , ∀f solenoidal,

for some well-chosen spaces H1,2?

Theorem (Guillarmou-L. ’18, Gouëzel-L. ’19)

For all exponents n/2 < s < r , there exists C , ν > 0 such that the
following holds. For all solenoidal tensors f such that ‖f ‖H r ≤ 1, one has:

‖f ‖Hs ≤ C‖Imf ‖ν`∞

Now, recall the Finite Livsic theorem:

Theorem (Gouëzel-L. ’19, Finite Livsic theorem)

For any L > 0 large enough, given f ∈ Cα(M) such that ‖f ‖Cα ≤ 1 and
If (γ) = 0 for all γ ∈ G such that `(γ) ≤ L, there exists u, h ∈ Cβ(M)

such that Xu ∈ Cβ(M), ‖h‖Cβ ≤ L−µ and f = Xu + h. This implies
that ‖If ‖`∞ ≤ L−µ.
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Combining the two previous theorems, we obtain the

Corollary (Gouëzel-L. ’19)

For all exponents n/2 < s < r , there exists µ > 0 such that the following
holds. For any L > 0 large enough, given any solenoidal tensor f such
that ‖f ‖H r ≤ 1 and Imf (c) = 0 for all c ∈ C such that `(γc) ≤ L, one
has: ‖f ‖Hs ≤ L−µ. (In particular, L = +∞ is the Classical Livsic
theorem.)
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The X-ray transform I has bad analytic properties (in particular, it
maps to functions on a discrete set).

Idea (Guillarmou ’17): Mimick the case of a
simple manifold with boundary (smwb). On a
smwb, we can write the normal operator

I ∗I =

∫ +∞

−∞
etXdt

(i.e. I ∗If (x , v) =
∫ `+(x,v)
`−(x,v)

f (ϕt(x , v))dt).
Then

I ∗mIm = πm∗I
∗Iπ∗m

is a ΨDO of order -1, elliptic on solenoidal
tensors.

(x; v)

M

`
−
(x; v)

`+(x; v)

If R±(λ) := (X ± λ)−1 denotes the resolvent of the generator of the
geodesic flow, then I ∗I = R+(0)− R−(0).
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Same construction works on a closed manifold:

R±(λ) := (X ± λ)−1 (initially defined for <(λ) > 0) can be
meromorphically extended to the whole complex plane
(Faure-Sjöstrand ’11, Dyatlov-Zworski ’16).

R±(λ) have a pole of order 1 at 0; we denote by R±0 the
holomorphic part of R±(λ) at λ = 0. We set:

Π := R+
0 − R−0 + 1⊗ 1

Π is the analogue of I ∗I . One has ΠX = 0 = XΠ.

Define Πm := πm∗Ππ
∗
m. Analogue of I ∗mIm.
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Theorem (Guillarmou ’17, Guillarmou-L. ’18, Gouëzel-L. ’19,
Properties of Πm)

Πm is a ΨDO of order −1, elliptic on solenoidal tensors,

ΠmD = 0 = D∗Πm,

If Im is s-injective, then Πm is s-injective; moreover, there exists a
ΨDO of order 1 such that PΠm = πkerD∗ , where πkerD∗ is the
L2-projection on solenoidal tensors. This implies:

‖f ‖Hs ≤ C‖Πmf ‖Hs+1 , ∀f solenoidal

Π is non-negative i.e. 〈Πf , f 〉L2 ≥ 0 and Πm is coercive i.e.
〈Πmf , f 〉L2 ≥ C‖f ‖2

H−1/2 for all solenoidal f .

Here, L2 = L2(SM, dµ), where µ is the Liouville measure.
For f ∈ C∞(SM), we call Var(f ) := 〈Πf , f 〉L2 the variance of f with
respect to the Liouville measure. And for f ∈ C∞(M,⊗m

S T
∗M),

Varm(f ) = 〈Πmf , f 〉L2 .
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The link between Im and Πm is not explicit but obtained thanks to
the Positive Livsic Theorem or the Approximate Livsic Theorem.

Roughly (for some well-chosen s ...) writing π∗mf = Xu + h, with
‖h‖Cβ ≤ ‖Imf ‖ν`∞ , one has:

‖f ‖Hs ≤ ‖Πmf ‖Hs+1

= ‖πm∗Ππ∗mf ‖Hs+1

= ‖πm∗ ΠX︸︷︷︸
=0

u + πm∗Πh‖Hs+1

= ‖πm∗Πh‖Hs+1 ≤ ‖h‖Hs+1 ≤ ‖Imf ‖ν`∞

So ‖f ‖Hs ≤ ‖Imf ‖ν`∞ .
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We apply the previous results in the case m = 2.
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(M, g) is an Anosov Riemannian manifold,

C is the set of free homotopy classes; given c ∈ C, there exists a
unique closed geodesic γc ∈ c (Klingenberg ’74).

Definition (The marked length spectrum)

Lg :

∣∣∣∣ C → R∗+
c 7→ `g (γc),

`g (γc) Riemannian length computed with respect to g .
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Conjecture (Burns-Katok ’85)

The marked length spectrum of a negatively-curved manifold determines
the metric (up to isometries) i.e.: if g and g ′ have negative sectional
curvature, same marked length spectrum Lg = Lg ′ , then there exists
φ : M → M smooth diffeomorphism such that φ∗g ′ = g .

The action of diffeomorphisms is a natural obstruction one cannot
avoid,

Analogue of Michel’s conjecture of rigidity for simple manifolds with
boundary (the boundary distance function should determine the
metric up to isometries),

Why the marked length spectrum ? The length spectrum (:=
collection of lengths regardless of the homotopy) does not determine
the metric (counterexamples by Vigneras ’80)
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Known results:

Croke ’90, Otal ’90: proof for negatively-curved surfaces,

Katok ’88: proof for g ′ conformal to g ,

Besson-Courtois-Gallot ’95, Hamenstädt ’99: proof when (M, g)

is a locally symmetric space.

Conjecture remains open in dimension > 2 for negatively-curved
manifolds and in any dimension for Anosov Riemannian manifolds.

Theorem (Guillarmou-L. ’18)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗,U open
Ck -neighborhood of g0 such that: if g ∈ U and Lg = Lg0 , then g is
isometric to g0.
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We pick g in a neighborhood of g0. Ideas of the proof:

Solenoidal reduction: there exists a diffeomorphism φ : M → M such
that g ′ := φ∗g is solenoidal. (Without loss of generality, we can
assume g is solenoidal at the beginning.)

Use a Taylor expansion of the marked length spectrum:

Lg
Lg0

= 1 +
1
2
I g0
2 (g − g0) +O(‖g − g0‖2C3),

thus, if Lg = Lg0 , ‖I
g0
2 (g − g0)‖`∞ = O(‖g − g0‖2C3).

Then, use the stability estimates on I2

‖g − g0‖Hs ≤ ‖I g0
2 (g − g0)‖ν`∞

to conclude that g ′ = g0.
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We present another proof of (a refined version) this Theorem. Let us
pretend we do not know the previous proof.

Theorem (Guillarmou-Knieper-L. ’19)

Let (M, g0) be a negatively-curved manifold. Then ∃k ∈ N∗,U open
Ck -neighborhood of g0 such that: if g ∈ U and

lim
j→+∞

Lg (cj)

Lg0(cj)
→ 1,

for all sequences of closed geodesics (γcj )c∈N such that Lg0(cj)→∞,
then g is isometric to g0.

For simplicity, we denote this assumption by Lg/Lg0 → 1.
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The geodesic flows (ϕg0
t )t∈R and (ϕg

t )t∈R are orbit-conjugate, that is
there exists a homeomorphism ψg : SM → SM (differentiable in the
flow direction) such that dψg (Xg0) = agXg ,

The marked length spectrum coincide i.e. Lg = Lg0 iff the geodesic
flows are conjugate i.e. ag ≡ 1 (thus ψg ◦ ϕg0

t = ϕg
t ◦ ψg ),

dµg0 is the Liouville measure induced by the metric g0.

Definition (Geodesic stretch)

The geodesic stretch of g with respect to the Liouville measure dµg0 is

Idµg0
(g0, g) :=

∫
SM

ag dµg0

Lemma

Under the assumption that Lg/Lg0 → 1, Idµg0
(g0, g) = 1.
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Let us do some "geometry" in Met(M), the space of metrics on M.
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Met(M) ⊂ C∞(M,⊗2
ST
∗M), O(g0) := {φ∗g0 | φ ∈ Diff0(M)} ,

Tg0Met(M) ' C∞(M,⊗2
ST
∗M) ' kerD∗g0

⊕ Im Dg0 '
kerD∗g0

⊕ Tg0O(g0)

g0

kerD∗

Met(M)ImD
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We introduce a codimension 1 submanifold H of Met(M) (defined
by an implicit equation F (g) = 0 for some F : Met(M)→ R)
passing through g0 such that {g | Lg/Lg0 → 1} ⊂ H. Moreover, H
is transverse to kerD∗.

g0

kerD∗

H

Met(M)
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We pick g such that Lg/Lg0 → 1 (thus g ∈ H). We can first do a
solenoidal reduction. Here g ′ = φ∗g .

g0

kerD∗

H

Met(M)

g
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The geodesic stretch functional
Ψ : g 7→ Idµg0

(g0, g) has the
following properties on H ∩ kerD∗:

Ψ(g0) = 1

dΨg0 = 0

d2Ψg0(h, h) = Var2(h) =

〈Π2h, h〉 ≥ C‖h‖2
H−1/2

g0

kerD∗

H

Met(M)

g0
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The geodesic stretch functional
Ψ : g 7→ Idµg0

(g0, g) has the
following properties on H ∩ kerD∗:

Ψ(g0) = 1

dΨg0 = 0

d2Ψg0(h, h) = Var2(h) =

〈Π2h, h〉 ≥ C‖h‖2
H−1/2

But since Lg ′/Lg0 → 1, Ψ(g ′) = 1.
We then easily obtain that g ′ = g0

(as long as g was chosen close
enough to g0 at the beginning).
This concludes the proof.

kerD∗ \H
g0g0

Ψ

1
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The proof also yields a stability estimate of the form:

Corollary

There exists k ∈ N such that for any metric g ∈ H in a neighborhood of
g0, there exists a diffeomorphism φ : M → M such that:

‖φ∗g − g0‖C k . |1− Idµg0
(g0, g)|
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Perspectives:

Further study of the geodesic stretch functional.

Other applications of the stability estimates on Im, for m 6= 0, 2?

Study of the Marked Length Spectrum on non-compact manifolds
with hyperbolic cusps (paper in preparation with Yannick Guedes
Bonthonneau).

Z1

Z2

Z3

M0
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Thank you for your attention !
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