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As in the previous talk, we will consider
walks with the following transition matrix.

U(t) = eitA

where A is the adjacency matrix of a
graph.

Mixing matrix

M(t) = U(t) ◦ U(t)

eTuM(t)ev is the probability of measuring at
vertex u, having started at v, at time t.
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Average mixing matrix

M̂ = lim
T→∞

1

T

∫ T

0

M(t)dt

Average mixing matrix

Theorem (Godsil 2012)

If A(X) =
∑

r θrEr is the spectral
decomposition of A, then

M̂ =
∑
r

Er ◦ Er.
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Like the eigenvalues of the adjacency matrix,
the trace and rank of M̂ are graph invariants.

Question: how much does the rank of M̂ (or

the trace of M̂) tell us about the graph?

In other words, how much does the average
behaviour of the quantum walk depend on the
choice of the graph?
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Rank of M̂ = 3.

Rank of M̂ = 5.

Rank of M̂ = 6.
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An algebraic interpretation of M̂

X

M̂(X) =

5/9 2/9 2/9
2/9 5/9 2/9
2/9 2/9 5/9


Consider the following map Ψ:1

0
0

 1 0 0
0 0 0
0 0 0

 ∑
iEi Ei

(
1 0 0
0 0 0
0 0 0

)

 5/9 −1/9 −1/9
−1/9 2/9 2/9
−1/9 2/9 2/9


5/9

2/9
2/9

M̂ is the matrix of
transformation of
this map

Coutinho, Godsil, G. Zhan. 2018
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Theorem (Continho, Godsil, G., Zhan 2018)

rk(M̂) = dim(Im(Ψ)).

all matrices commuting with A

”traceless” matrices

A

Bipartite

A2k+1

Corollary

If X is a bipartite graph with simple eigenvalues
on n vertices, then rk(M̂) ≤ dn2 e.
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How large can the rank be?

Theorem (Tao and Vu, 2017)

As n goes to infinity, the proportion of graphs
on n vertices which have simple eigenvalues
goes to 1.

Roughly speaking, this implies that the average
mixing matrices of most graphs will not have full
rank.

There are examples of graphs where M̂ has full
rank, including the star graph and the complete
graphs.



How small can the rank be?

M̂ has rank 0: null graph

M̂ has rank 1: K1 or K2

M̂ has rank 2: ????

It is possible that there is an infinite family
of graphs with M̂ having rank 2 and simple
eigenvalues.

Theorem (Godsil, G., Sinkovic 2018)

If T is a tree with simple eigenvalues with at
least 4 vertices and T is not P4, then the
rank of M̂(T ) is at least 3.
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Trees on n vertices:

n

min rk of M̂

2 3 4 5 6 7 8 9 10 11 12

13 14 15 16

1 2 2 3 3 4 4 5 4 5 5

6 6 7 7

n

min rk of M̂ 8 7 8 8

17 18 19 20

Open problem

Is there a non-constant, increasing function
f(n) which lower bounds the minimum rank

of M̂ amongst trees on n vertices?



Trees with simple eigenvalues

A tree on n vertices with n distinct eigenvalues
has rank of M̂ at most dn/2e.



Trees with simple eigenvalues

A tree on n vertices with n distinct eigenvalues
has rank of M̂ at most dn/2e.
Computations show that trees on
n = 1, . . . , 17, 19, 20 vertices with distinct
eigenvalues all meet this bound.



Trees with simple eigenvalues

A tree on n vertices with n distinct eigenvalues
has rank of M̂ at most dn/2e.
Computations show that trees on
n = 1, . . . , 17, 19, 20 vertices with distinct
eigenvalues all meet this bound.

For example, there are 317955 trees on 19
vertices, 19884 of which have simple eigenvalues.
These all have rank of M̂ equal to 10.



Trees with simple eigenvalues

A tree on n vertices with n distinct eigenvalues
has rank of M̂ at most dn/2e.
Computations show that trees on
n = 1, . . . , 17, 19, 20 vertices with distinct
eigenvalues all meet this bound.

For example, there are 317955 trees on 19
vertices, 19884 of which have simple eigenvalues.
These all have rank of M̂ equal to 10.

Theorem (Godsil, G., Sinkovic)

For every positive real number c, there exists a
tree T with simple eigenvalues such that

dn/2e − rk(M̂(T )) > c.
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A graph operation

graph with simple
eigenvalues on n
vertices with M̂
having rank r

graph with simple
eigenvalues on 2n
vertices with M̂
having rank 2r.

Theorem (Godsil, G., Sinkovic 2018)
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Maximum trace

For a graph X, we will consider the quantum
walks using the adjacency matrix and the
Laplacian matrix, with average mixing matrices
M̂A and M̂L, resp.

Graphs attaining the maximum trace

n

M̂A

M̂L

3 4 5 6 7 8

K3 K4 K5 K6 K7 K8

K3 K4 K5 K6 K7 K8

actual theorem

open
problem
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Theorem (Godsil, G., Sobchuck 2019+)
If the eigenspaces of L(Y ) “refine” those of
L(X), then

M̂L(Y ) � M̂L(X).

Corollary
If X is a connected graph on n vertices, then

tr(M̂L(X)) ≤ tr(M̂L(Kn)).

Corollary
If X is a regular connected graph on n vertices,
then

tr(M̂A(X)) ≤ tr(M̂A(Kn)).
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Minimum trace

Open problem
Which graphs attain the minimum trace with
respect to M̂A and M̂L?

For M̂L and graph up to 8 vertices, the paths
attains the minimum, but there are also other
graphs.

For M̂A, we have P3, P4 and P5 and
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Diagonal entries of M̂

Question: when does this matrix have a constant
diagonal?
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Cospectral vertices

Vertices u and v in a graph X are cospectral if

φ(X \ u) = φ(X \ v).

What does it mean?

u

v

Ak =v

u

⇔ A =
∑

θ θEθ then ∀θ, (Eθ)u,u = (Eθ)v,v.
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A graph is walk-regular if every pair of vertices are
cospectral.

⇔ Each Ei in the spectral decomposition of A has
constant diagonal.

Lemma

If X is walk-regular, then M̂ has constant
diagonal.

(Recall that M̂ =
∑

r Er ◦ Er.)

Surprisingly, X does not have to be walk-regular
for this to happen.
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Recall the graph operation from before

walk-regular graph

graph with M̂
having constant
diagonal

Theorem (Godsil, G., Sobchuk 2019+)
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What do these graphs have in common?

Graphs on 8 vertices
attaining the
minimum trace with
respect to M̂L.



Thanks!


