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An inverse problem

Let (M, g) be a smooth Riemannian manifold with boundary and consider

∆gu + V (x , u) = 0, in M, (1)

u = f , on ∂M.

There is a unique small solution to (1) for each small, smooth f , under
suitable assumptions on V . We define the Dirichlet-to-Neumann map

ΛV f = ∂νu|∂M .

The case V (x , z) = V1(x)z corresponds to the classical:

Calderón problem. Find V given ΛV .

We will consider non-linearities of the form V (x , z) =
∑∞

k=2 Vk(x)zk .



On previous literature in the linear case V (x , z) = V1(x)z

Standing assumption. The dimension n of M satisfies n ≥ 3.

I Linearized inverse problem in the Euclidean case: [Calderón’80]

uses density of products of harmonic exponentials, that is,
e izxe i z̄x = e i2ξx where z = ξ + iη, |ξ| = |η| and ξ ⊥ η.

I Euclidean case: [Sylvester-Uhlmann’87] replaces harmonic
exponentials by CGO solutions e izx + R with R → 0 as |z | → ∞.

I Product case g(t, x) = dt2 + g0(x) with g0 simple: [Dos Santos

Ferreira-Kenig-Salo-Uhlmann’09] takes eλ(t+ir)a + R with r the
radial coordinate in geodesic normal coordinates.

I Product case g(t, x) = dt2 + g0(x) with g0 having invertible geodesic
ray transform: [Dos Santos Ferreira-Kurylev-Lassas-Salo’16]

uses a Gaussian beam construction.

We will use Gaussian beams.



On previous literature in the non-linear case

If the inverse problem for the linear case ∆gu + V1(x)u = 0 is solved, the
non-linear case ∆gu + V (x , u) = 0 can often be reduced to the linear case
via linearization.

I Euclidean case [Isakov-Sylvester’94], [Sun’10], . . . .

Multiple-fold linearization allows for solving inverse problems for non-linear
wave equations in cases where the corresponding linear problem is open
[Kurylev-Lassas-Uhlmann’18].

We will use multiple-fold linearizations.

Before submitting our results we became aware of an upcoming preprint of
Lassas, Liimatainen, Lin and Salo, considering independently the same
problem, and we agreed with them to post to arXiv at the same day1.

1We didn’t quite succeed, though



Recovery of third and higher order terms

Suppose that M ⊂ R×M0 and that, writing x = (t, x ′),

g(t, x ′) = c(t, x ′)(dt2 + g0(x ′)), V (t, x ′, z) =
∞∑
k=3

Vk(t, x ′)zk .

Recall that ΛV f = ∂νu|∂M where u solves

∆gu + V (x , u) = 0, in M,

u = f , on ∂M.

Theorem [Lassas-Liimatainen-Lin-Salo, Feizmohammadi-L.O.].
ΛV determines V uniquely.

Both the proofs are based on showing that products of four harmonic
functions are dense (but we give different density proofs).



Recovery of second order terms

Suppose now that M ⊂ R×M0 is 3-dimensional and that

g(t, x ′) = c(t, x ′)(dt2 + g0(x ′)), V (t, x ′, z) =
∞∑
k=2

Vk(t, x ′)zk .

We choose an extension M̂0 of M0.

Theorem [Feizmohammadi-L.O.] Let γ be a geodesic on M̂0, and suppose
that there is such γ(a) ∈ M̂0 \M0 that no point along γ is conjugate to
γ(a). Then ΛV determines V (·, γ(r), ·) for all γ(r) ∈ M0.

If for each p ∈ M0 there is a geodesic γp with the above property, then
our proof shows that products of three harmonic functions are dense.



Gaussian beams

We consider Fermi coordinates (r , y) along the geodesic γ(r) = (r , 0).
There are two families of solutions to ∆gu = 0 of the form

Uλ(t, r , y) = eλ(t+ir)+λiH(r)y2+...(Y−1/2(r) + . . . ),

Vλ(t, r , y) = e−λ̄(t+ir)−λ̄i H̄(r)y2+...(Ȳ−1/2(r) + . . . ),

where λ = σ + iτ , H = Ẏ Y−1 and Y solves the Jacobi equation

Ÿ − KY = 0 (K is the Ricci (1,1)-tensor)

in the (1-dimensional) orthogonal complement γ̇⊥ of γ̇, together with the
additional constraint:

(C) Y (r0) 6= 0 and ImH(r0) > 0 for some r0.



Two-fold linearization

To simplify the presentation, we suppose that V (x , z) = q(x)z2.
Let fλ be the trace of the Gaussian beam solution Uλ, let ε > 0 be small,
and let u be the solution of

∆gu + qu2 = 0, in M,

u = εfλ, on ∂M.

Then w = −∂2
ε u|ε=0 satisfies

∆gw = qU2
λ, in M,

w = 0, on ∂M.

Observe that ∂νw |∂M = −∂2
εΛV (εfλ)|ε=0 and therefore is known. For any

v satisfying ∆gv = 0 it holds that∫
M
qU2

λ v dx =

∫
M

(∆gw)v dx −
∫
M
w∆gv dx = known bd terms.



Reduction to an integral transform

Recall the form of the Gaussian beam solutions

Uλ(t, r , y) = eλ(t+ir)+λiH(r)y2+...(Y−1/2(r) + . . . ),

Vλ(t, r , y) = e−λ̄(t+ir)−λ̄i H̄(r)y2+...(Ȳ−1/2(r) + . . . ),

where λ = σ + iτ . We can recover the integral∫
M
qU2

λ V2λ dx =

∫
M
qe4iτ t−4τ r−σ ImHy2+...(|Y |−1Y−1/2 + . . . ) dt dr dy .

Equations H = Ẏ Y−1 and Ÿ − KY = 0 imply that (ImH)1/2 = c |Y |−1

with a constant c 6= 0. Applying stationary phase for σ →∞ gives∫
R
q̂(−4τ, r , 0)e−4τ rY−1/2(r) dr ,

where q is extended by zero outside M and q̂ denotes its Fourier transform
with respect to t. This leads to inversion of an integral transform.



Jacobi transform

We denote by Yγ the set of Jacobi fields on a geodesic γ that are normal
(i.e. orthogonal to γ̇) and satisfy

(C) Y (r0) 6= 0 and Im Ẏ Y−1(r0) > 0 for some r0.

We define an integral transform, that we call the Jacobi transform,

Jγf (Y ) =

∫
R
f (r)Y−1/2(r)dr , Y ∈ Yγ ,

where f ∈ C (R) is supported on γ−1(M0).

Proposition [Feizmohammadi-L.O.] Let γ be a geodesic on M̂0, and
suppose that there is such γ(a) ∈ M̂0 \M0 that no point along γ is
conjugate to γ(a). Then the Jacobi transform Jγ is injective.



Inversion of the Jacobi transform

We suppose that Jγf = 0 and show that f = 0.

Consider the normal Jacobi fields Y1 and Y2 satisfying{
Y1(a) = 0,

Ẏ1(a) = 1,

{
Y2(a) = 1,

Ẏ2(a) = 0.

We set Y = Y1 − iεY2, ε > 0, and see that Y satisfies the condition (C).

By the non-conjugacy assumption, Y1 > 0 on supp(f ), and

0 =

∫
R
f (r)Y−1/2(r)dr =

∫
R
f̃ (r) (1− iεX (r))−1/2dr ,

where f̃ = f Y
−1/2
1 and X = Y2Y

−1
1 . By expanding in Taylor series in ε,∫

R
f̃ (r)X k(r)dr = 0, k = 0, 1, 2, . . . .



Inversion of the Jacobi transform continues

Recall that X = Y2Y
−1
1 . It remains to show that∫

R
f̃ (r)X k(r)dr = 0, k = 0, 1, 2, . . . , ⇒ f̃ = 0.

Supposing that we can change variables s = X (r), we have∫
R
h(s) skds = 0, k = 0, 1, 2, . . . ,

where h(s) = f̃ (r)Ẋ (r). This again implies that h = 0.

To justify the change of variables, we show that X is strictly decreasing:

Ẋ = WY−2
1 , W = Ẏ2Y1 − Y2Ẏ1,

where the Wronskian satisfies W (r) = W (a) = −1.



Open questions

I Recovery of the second order term in higher dimensions and under
weaker geometric assumptions.

I Recovery of the first order term under the assumption that V (x , z) is
genuinely non-linear.

Related to the second question, we considered recently the following
problem: Let g be a globally hyperbolic Lorentzian metric on R× Ω, let
T > 0 and let B ⊂ Ω be open and bounded. Define Λqf = u|(0,T )×B for
small f ∈ C∞0 ((0,T )× B) where u solves{

�gu + qu + u3 = f , in R× Ω,

u|t<0 = 0.

Theorem [Feizmohammadi-L.O.]. Λq determines q on the causal diamond
generated by (0,T )× B.


