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Canard: Van der Pol equation (Eckhaus 1983)
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Rosenzweig-MacArthur predator–prey model

RM-model, efficiency

dx1
dt

= f(x1, x2, ε) = x1(1− x1 − a1x2
1 + b1x1

)

dx2
dt

= εg(x1, x2, ε) = εx2(
a1x1

1 + b1x1
− 1)

parameter Interpretation
t Time variable
x1 Prey density
x2 Predator biomass density
a1 Searching rate
b1 Searching rate × handling time
ε Efficiency and predator death rate



The hyperbolic relationship

F(x1, x2) =
a1x1

1 + b1x1

• Ecology: Holling type II functional response

• Biochemistry: Michaelis-Menten kinetics

Derivation using time-scale separation: searching and feed-
ing is much faster than population physiological processes,
such as growth and death

Here the parameters are:
a1 = b; searching rate
b1 = b/k; searching rate × handling time

The biological interpretation of ε is the yield in Microbiol-
ogy, or assimilation efficiency in Ecology and here besides
a time-scale parameter also predator death rate factor



Bifurcation analysis of RM predator–prey model

dx1
dt

= x1(1− x1 − a1x2
1 + b1x1

)

dx2
dt

= εx2(
a1x1

1 + b1x1
− 1)

Bifurcation Description

TC Transcritical bifurcation:
invasion through boundary equilibrium

T Tangent bifurcation:
collapse of the system

H Hopf bifurcation:
origin of (un)stable limit cycle

Literature (ε = 1):

Yu. A Kuznetsov, Elements of Applied Bifurcation Theory, Applied

Mathematical Sciences 112, Springer-Verlag, 2004



RM-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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Transient dynamics A,C b1 = 3; A,B ε = 1; B,D b1 = 8; C,D ε = 0.01
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Transient dynamics b1 = 4 H A ε = 1; B ε = 0.11; C ε = 0.01
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fast system

ε → 0
dx1
dt

= f(x1, x2, ε)
dx1
dt

= f(x1, x2,0)

dx2
dt

= εg(x1, x2, ε)
dx2
dt

= 0

layer system

slow system τ = εt

ε → 0

ε
dx1
dτ

= f(x1, x2, ε) 0 = f(x1, x2,0)

dx2
dτ

= g(x1, x2, ε)
dx2
dτ

= g(x1, x2,0)

reduced system



Relaxation oscillations

(G. Hek 2010)
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Approximations techniques slow manifolds, x2 = qε(x1)

Perturbed manifold M1
ε can be described as a graph

{(x1, x2)|x2 = qε(x1), x1 ≥ 0, x2 ≥ 0}
This manifold is invariant when

dx2
dt

=
dx2
dx1

dx1
dt

=
dqε

dx1

dx1
dt

The following asymptotic or power series expansion in ε is

introduced:

x2 = qε(x1) =q0(x1) + εq1(x1) + ε2q2(x1) + . . . ,

q0 =
(1− x1)(1 + b1x1)

a1
, q1 = q0

(x1(a1 − b1)− 1)

x1(2x1b1 + 1− b1)
q2 = · · ·



In order to simulate the model we solve the uncoupled

system

dx̃1
dt

= x̃1
(
1− x̃1 − a1qε(x̃1)

1 + b1x̃1

)
master

dx̃2
dt

= εqε(x̃1)
( a1x̃1
1 + b1x̃1

− 1
)

slave

where the initial values are chosen as:

x̃1 = x1(0) and x̃2 = qε(x1(0))



Second order asymptotic expansion approximation

a1 = 5/3 b1, where b1 = 3

x2 = qε(x1), ε = 0.1
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Second order approximation

a1 = 5/3 b1, b1 = 3, ε = 0.01, ε = 0.1
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Second order approximation

a1 = 5/3 b1, A:b1 = 8, B:b1 = 4, ε = 0.01, ε = 0.1
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RM-model: a1 = 5/3b1, ε = 0.01,

A: b1 = 4.0402, B: b1 = 4.0404
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One-parameter diagram xi vs b1, ε = 0.01
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Where is the canard location?

To avoid unboundedness at Hopf bifurcation point we also

take expansion of parameter b1

Asymptotic expansion expansion in ε now near the Hopf

bifurcation point of r(x1, ε)

x2 = r(x1, ε) = r0(x1) + εr1(x1) + ε2r2(x1) + . . .

and of bifurcation parameter b1

b1(ε) = b10 + εb11 + ε2b12 + . . .

where rj and bji, j = 1 · · · are fixed by an invariance con-

dition at Hopf bifurcation point by equality order by order

of powers of ε



Equating O(1) terms yields:

r0 =
(1− x1)(1 + b10x1)

5/3 b10

Equating O(ε) terms yields:

r1 =
(1− x1)(−3b10 + 3b11x1(b10 − 1)− 6b11x

2
1b10 − x1b

2
10 + 2x21b

3
10)

b210(1 + 2x1b10 − b10)x1
b10 =4

However 1 + 2x1b10 − b10 = 0 evaluated at b10 = 4 and
equilibrium x1 = x∗1 = x1 at Hopf bifurcation point

Determine b11 so that besides denominator numerator is
zero

This gives b11 = 100/27



In a similar way we can get higher order approximations

For ε = 0.01 we calculated for the second order term

b1(ε) = b10 + b11ε+ b12ε
2 + . . .

b1(ε) = 4+ 100/27 ε+58700/2187 ε2 = 4.04018

Higher order terms can be calculated with

symbolic algebra packages using the iterative scheme



RM-model Asymptotic expansion approximation

r(x1, ε = 0.01) b1 = 4.0403: a1 = 5/3b1,
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One-parameter diagram

for ε with various b1 = 4.01,4.02,4.03,4.04,4.05
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Asymptotic expansion approximation r(x1, ε) is divergent

Terms b1iε
i as function of i with ε = 0.01.
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Relaxation oscillations

(Pogiale 2019)
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Polynomial vector field

The studied polynomial version is orbitally equivalent with
the original system

dx

dt
= x

(
b+ (1− b)x− ay − x2

)

dy

dt
= ε ((a− 1)x− b) y

where we use the transformations a = a1/b1, b = 1/b1
m = 1, x = x1/b, y = x2/b defined for positive invariant
domain K+ = {(x, y)/x ≥ 0, y ≥ 0}

Geometrical Singular Perturbation Theory (GSPT), initi-
ated by Fenichel’s work, provides mathematical results for
analyzing the dynamics around invariant manifolds when
they are normally hyperbolic

Extrapopation of properties from ε = 0 to 0 < ε � 1



Positive equilibrium point E = (xE, yE) with

xE =
mb

a− 1
, yE =

(1− xE)(b+ xE)

a

Top of parabola and intersection with vertical axis

ST = (xT , yT) = (
1− b

2
,
(1 + b)2

4a
)

SC = (xC, yC) =
(
0,

b

a

)

At these points the invariant sets are not normally hyper-

bolic : M10 loses the normal hyperbolicity at SC and M20

loses the normal hyperbolicity at SC and ST . ST is called a

fold point because when ε = 0 and y increases and crosses

the y-value of ST , a fold bifurcation takes place



Singular points on the invariant manifolds

Extension methods have been provided for singular points

on the invariant manifolds where the normal hyperbolicity

is lost

The blow-up technique allows to build a new geometrical

object and a new vector field on this object, by change

of variables, such that for the new system, the invariant

manifolds are normally hyperbolic

This is a so-called desingularization method. We apply this

approach to study the dynamics of the RM model with two

time scales around the singular points ST and SC
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Brief description of the blow-up technique

Analyzing fold points like ST , a translation is made such
that the fold point is moved to the origin

Here, it does not matter because as we will analyse the
Hopf bifurcation at this point, ST and E coincide at the
bifurcation

Then our change of coordinates is efficient to understand
the bifurcation and the occurrence of a canard phenomenon

Moreover we take a second bifurcation parameter λ and
replace the parameter a

λ = 1− b− 2xE , a = m
1 + b− λ

1− b− λ

Bifurcation occurs at λ = 0



Let X = x− xE and Y = y − yE and λ defined as above

dX

dt
= (X + xE)

(
λX −m

1 + b− λ

1− b− λ
Y −X2

)

dY

dt
= ε

2bm

1− b− λ
X(Y + yE)

To analyze this singular fold point, we complete this system

by

dε

dt
= 0

dλ

dt
= 0



Family of vector fields

System on K̃+ = {(X,Y ), X ≥ −xE, Y ≥ −yE} will be con-

sidered as a differential system defining a family of vector

fields Xμ on K̃+ where μ = (ε, λ) ∈ Λ with Λ = [0; ε0) × I

where I is a small interval containing 0 and ε0 > 0

In this family, the point (0,0,0,0) ∈ K+ × Λ is a so called

non-degenerate singular fold point

Fenichel’s theorem does not apply at these points because

of the loss of normal hyperbolicity at ST (fold T) and SC

(transcritical TC)



Dumortier and Roussarie (2000,1996) developed the gen-

eral approach for analyzing singular fold points in dynam-

ical systems with two time scales using the blow-up tech-

nique.

In Krupa and Szmolyan (2001) the authors address the

study of non-degenerate singular fold points and extend

the previous results

Our case is a particular case of this general study



For all λ ∈ I, the parabola defined by

Y =
(1− b− λ)

m(1 + b− λ)
(λX −X2)

is invariant when ε = 0

Union of all these parabolas constitutes an invariant 3-
dimensional manifold for ε = 0 that we denote by M̃20.

M̃S
20 is the stable branch and M̃U

20 unstable branch

For ε = 0, the stable branch and the unstable branch of
the manifold are connected

Attracting slow branch M̃S
2ε may connect to repelling slow

branch M̃U
2ε at isolated values λ = λ(ε)

Transition between small and large oscillations is via a max-
imal canard



Scheme of invariant manifolds M2ε

A: ε = 0 and B for 0 < ε � 1

(A) (B)



We desingularize the point (0,0,0,0) ∈ K̃+ × Λ by consid-

ering the blow-up :

Ψ : S3 × [0;+∞[ −→ R
4

(X1, Y1, λ1, ε1, r) 
→ (X,Y, ε, λ) =
(
rX1, r

2Y1, r
2ε1, rλ1

)

where

X2
1 + Y 2

1 + λ21 + ε21 = 1



To understand the dynamics on this hemisphere, we use
charts
{X1 = ±1}, {Y1 = ±1}, {ε1 = 1}

For instance, the chart {X1 = 1} describes the dynamics
of the new vector field around the hemisphere S3+ for
positive X1

To get the chart {X1 = 1}, we consider the change of
coordinates (X, Y, ε, λ) = (r, r2Y1, r

2ε1, rλ1) which leads to:

dr

dt
=

dX

dt
dY1
dt

=
1

r2

[
dY

dt
− 2rY1

dr

dt

]

dε1
dt

= −2ε1
r

dr

dt
dλ1
dt

= −λ1
r

dr

dt



Special case of system with
dX1

dt
= 0 because X1 = 1 hence

X = r. After some straightforward calculations, assuming

that r is small and expanding the equations with respect

to r, one gets:

dr

dt
= r2

1− b

2

(
− 1 + λ1 − 1+ b

1− b
Y1

)
+O(r3)

dY1
dt

= r

(
b
1+ b

2
ε1 − Y1(1− b)(λ1 − 1− 1+ b

1− b
Y1)

)
+O(r2)



Next figure illustrates the blow-up result

The singular fold point has been replaced by a hemisphere

The vector field on the horizontal set {ε = 0} has been

determined from analysis in charts {X1 = ±1} and {Y1 =

±1} and then projected on the hemisphere equator (circle)



Scheme of blow-up around the singularity

(0,0,0,0) for a fixed positive λ.



We consider the case ε1 = 0 and λ1 = 0 in the previous

system, and after division by r, one gets:

dr

dt
= r

1− b

2

(
− 1− 1+ b

1− b
Y1)

)
+O(r2)

dY1
dt

= −Y1(1− b)
(
− 1− 1 + b

1− b
Y1

)
+O(r)

Dividing by r for r > 0 does not change the trajectories and

allows to determine the dynamics around the hemisphere

and this is why we can desingularize the origin.



The study of the dynamics is simple and the main results

are that the vertical axis r1 = 0 is invariant as well as the

straight line defined by Y1 = − 1− b

(1 + b)

These invariant sets in the chart {X1 = 1} correspond to

invariant sets on the blown-up geometrical object, namely

respectively to the hemisphere equator (circle) and to the

stable branch of the parabola (straight lines perpendicular

to the circle), in the plane {ε1 = 0}⋂{λ1 = 0}



Scheme of dynamics in a chart {X1 = 1}

A: for ε1 = 0, λ1 = 0 and and B: dynamics around hemi-
sphere in the plane ε1 = 0 and λ1 = 0



Putting all the charts together and mapping the results
onto the blown up object allows to understand the dynam-
ics around the hemisphere

This is actually equivalent to the dynamics of the initial
system around the origin.
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We now need to analyze the dynamics for positive 0 < ε �
1. This is done by using the charts {ε1 = 1} with

λ1 = −0.1 in (A), λ1 = 0 in (B) and λ1 = 0.1 in (C)



Illustration of the dynamics induced by the vector field on

the blown up object for three values of λ1 in the chart

{ε1 = 1}

A: λ1 < 0, origin is a stable equilibrium attracting trajecto-

ries initiated under the parabola, while trajectories initiated

above this parabola leave the hemisphere by the West point

B: λ1 = 0, the origin is a center. All trajectories initiated

below the parabola are closed curves surrounding the ori-

gin. The trajectories initiated above the parabola leave the

hemisphere by the West point. The parabola is invariant

under the flow

C: λ1 > 0 origin is an unstable focus. All trajectories leave

the hemisphere by the West point



Main result Theorem Poggiale et al. (2019)

For ε > 0 small enough, the polynomial system admits

maximal canard solutions when λ becomes positive and

close to zero. More precisely, there exists a function de-

fined in the vicinity of 0 ∈ R with ε 
→ λc(ε) such that for

all ε > 0 close to 0, there exists λ = λc(ε) > 0 for which

the system exhibits a maximal canard

An approximation of this function is given by:

λc(ε) =
b(1 + b)2

(1− b)3
ε+O(ε3/2)



Define the Hamiltonian function H as follows :

H(X1, Y1) = exp (
2(1− b)

b(1 + b)
Y1)

(
X2

1 +
(1+ b)

1− b
Y1 − b(1 + b)2

2(1− b)2

)

This function vanishes on the parabola P and is positive
below the parabola Level curves of H correspond to tra-
jectories of system when λ1 = 0

Let denote by γ the trajectory on the hemisphere, it con-
nects the stable branch MS

20 to the unstable branch MU
20

on the equator of the hemisphere. Along this trajectory,
H remains equal to 0

The curve γ can be parameterized as follows:

γ(t) =

⎛
⎝ t

− 1−b
m(1+b)t

2 + b(1+b)
2(1−b)

⎞
⎠



The theorem claims that for all small ε > 0, there exists
a value of λ such that the unstable manifold and stable
manifold are connected

Actually, the connection will be established from γ

We will then prove that for all sufficiently small ε, there
exists a value of λ for which the distance between these
manifolds vanishes

To calculate the distance between the stable and unstable
branch of the invariant manifold in the chart {ε1 = 1}, we
calculate the deviation of the value taken by H(t) along
the whole curve γ for every (r, λ1) � (0,0).

The distance between M̄S
2ε and M̄U

2ε is:

δ(r, λ1) =
∫ H(γ(+∞))

H(γ(−∞))
dH(γ(t)) =

∫ +∞
−∞

dH(γ(t))

dt
dt



Lemma

There exists a function λ1c depending on r in a neighbor-

hood of 0 such that δ(r, λ1c(r)) = 0

This lemma proves the existence of canard solutions.

We get finally

λ1c(r) =
b(1 + b)2

(1− b)3
r +O(r2)



We work in the chart {ε1 = 1} and we use the following

blow-up:

Ψ : S3 × [0;+∞[ −→ R
4

(X1, Y1, λ1, ε1, r) 
→ (X,Y, ε, λ) =
(
rX1, r

2Y1, r
2ε1, rλ1

)

Hence r =
√
ε and λ =

√
ελ1, we conclude:

λc(
√
ε) =

mb(1 + b)2

(1− b)3
ε+O(ε3/2)

This is the same first order approximation as found previ-

ously with the asymptotic approximation approach
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Conclusions

• Existence of canards in the RM-model with two time

scales

• Use of biomasses not numbers of individuals

• Numerical approach: asymptiotic expansion in both

perturbation parameter and model parameter

• Analytical approach: Proof of existence: Also pertur-

bation parameter and model parameter are used
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