Analysis of a predator-prey model with two different time scales

Bob W. Kooi Faculty of Science, VU Amsterdam, The Netherlands

Jean-Christophe Poggiale

MIO UM 110, Aix-Marseille Univ., Univ. Toulon, CNRS, IRD, 13288 Marseille,

France

bob.kooi@vu.nl, http://www.bio.vu.nl/thb/

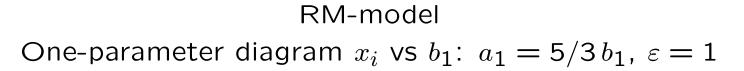
Outline

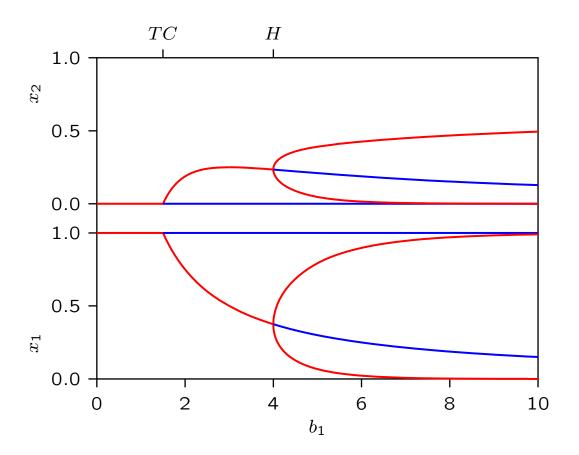
- Introduction
- Rosenzweig-MacArthur predator-prey RM model
 - □ Fast-slow analysis, Relaxation oscillations
 - □ Asymptotic expansion
 - □ Canard location
 - □ Geometric singular perturbation theory (GSPT)
 - □ Blow-up technique, Existence of Canards
- Mass Balance nutrient-prey-predator MB model
 □ Fast-slow analysis, Bifurcation theory
- Conclusions

MB nutrient-prey-predator model

$$\frac{dx_0}{dt} = (x_r - x_0)\varepsilon d - a_0 x_0 x_1$$
$$\frac{dx_1}{dt} = a_0 x_0 x_1 - \varepsilon dx_1 - \varepsilon \frac{a_1 x_1 x_2}{1 + b_1 x_1}$$
$$\frac{dx_2}{dt} = \varepsilon \frac{a_1 x_1 x_2}{1 + b_1 x_1} - \varepsilon dx_2$$

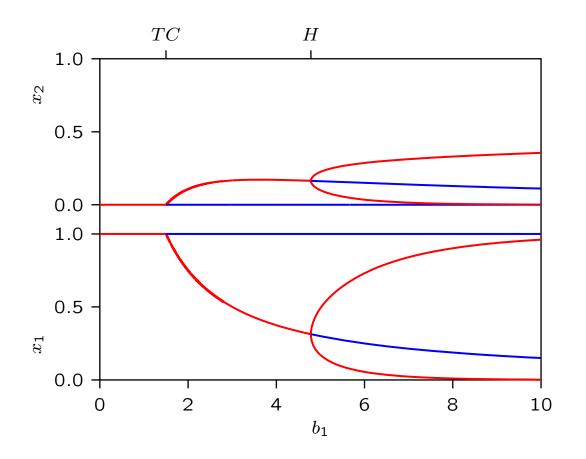
parameter	Interpretation
t	Fast time variable
x_0	Nutrient density
x_i	Population biomass density
x_r	Nutrient concentration in reservoir
d	Dilution rate
a_0	Searching rate
a_1	Searching rate
b_1	Searching rate \times handling time

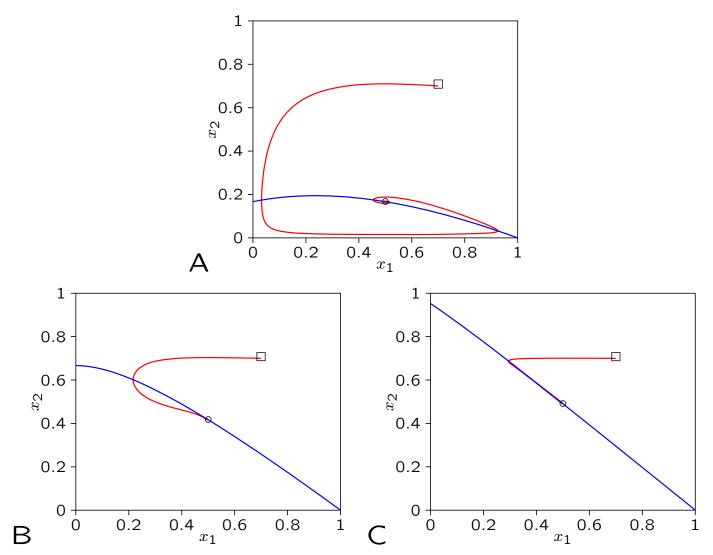

It is possible to decouple the system by introduction of the total biomass

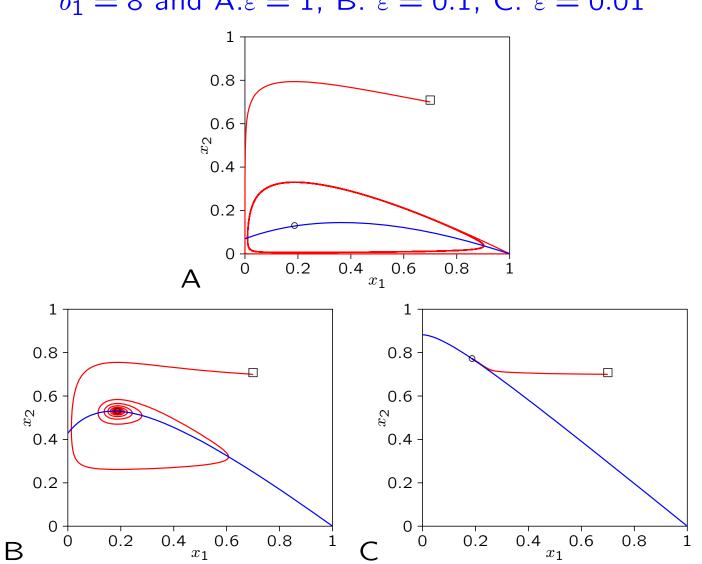

$$H(t) = x_0(t) + x_1(t) + x_2(t) - x_r \quad t \ge 0$$
$$\frac{dH}{dt} = -\varepsilon dH$$

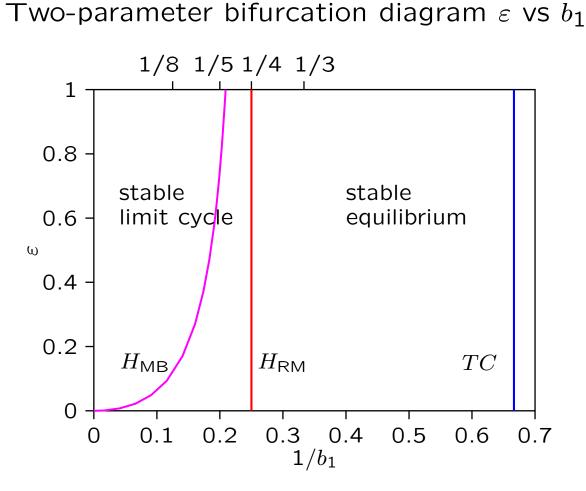
In order to be able to compare the two models RM, and MB we make the following assumptions: H(0) = 0 and this gives:

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - x_2 - \varepsilon \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$


Extra x_2 shows that prey has less nutrients available that are indirectly consumed by the predator and ε to avoid extra assumption on efficiency


Transcritical TC, Hopf H bifurcations


$\label{eq:mb-model} \begin{array}{l} \mathsf{MB}\text{-model}\\ \mathsf{One}\text{-parameter diagram } x_i \text{ vs } b_1\text{: } a_1 = 5/3\,b_1\text{, } \varepsilon = 1 \end{array}$


Transcritical TC, Hopf H bifurcations

 $b_1 = 8$ and A: $\varepsilon = 1$, B: $\varepsilon = 0.1$, C: $\varepsilon = 0.01$

Hopf H_{MB} ; H_{RM} ; Transcritical TC both models Hopf bifurcation differ substantially for $\varepsilon \downarrow 0$

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey RM model
 □ Fast-slow analysis, Relaxation oscillations
 - □ Asymptotic expansion
 - □ Canard location
 - □ Geometric singular perturbation theory (GSPT)
 - □ Blow-up technique, Existence of Canards
- Mass Balance nutrient-prey-predator MB model
 □ Fast-slow analysis, Bifurcation theory
- Conclusions

Conclusions

- RM \Rightarrow MB: Introduction of fixed efficiency and of dynamics of nutrients in the model leads to realistic solution and less complex dynamics when $\varepsilon \rightarrow 0$
- Integrated approach is important: Modelling, bifurcation analysis and perturbation theory
- Proper modelling gives perturbation parameter ε a biological interpretation not just a mathematical perturbation parameter
- In RM model a canard occurs just above the Hopf bifurcation and not in the MB model

Literature

B.W. Kooi and J-C. Poggiale, Modelling, singular perturbation and bifurcation analyses of bitrophic food chains, *Mathematical Bioscience*, 301:93-110 2018.

J-C. Poggiale, C. Aldebert, B. Girardot and B.W. Kooi, Analysis of a predator-prey model with specific time scales : a geometrical approach proving the occurrence of canard solutions *Journal of Mathematical Biology*, 2019.