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Outline

Motivating Example: q-enumeration of SYT’s via major index

Cyclotomic Generating Functions

More Examples and Some Asymptotics

Open Problems



Standard Young Tableaux

Defn. A standard Young tableau of shape λ is a bijective filling of
λ such that every row is increasing from left to right and every
column is increasing from top to bottom.

1 3 6 7 9
2 5 8
4

Important Fact. The standard Young tableaux of shape λ,
denoted SYT(λ), index a basis of the irreducible Sn representation
indexed by λ.



Counting Standard Young Tableaux

Hook Length Formula.(Frame-Robinson-Thrall, 1954)
If λ is a partition of n, then

#SYT (λ) = n!
∏c∈λ hc

where hc is the hook length of the cell c, i.e. the number of cells
directly to the right of c or below c, including c.

Example. Filling cells of λ = (5,3,1) ⊢ 9 by hook lengths:

7 5 4 2 1
4 2 1
1

So, #SYT (5,3,1) = 9!
7⋅5⋅4⋅2⋅4⋅2 = 162.

Remark. Notable other proofs by Greene-Nijenhuis-Wilf ’79
(probabilistic), Eriksson ’93 (bijective), Krattenthaler ’95
(bijective), Novelli -Pak -Stoyanovskii’97 (bijective), Bandlow’08,



q-Counting Standard Young Tableaux
Def. The descent set of a standard Young tableau T , denoted
D(T ), is the set of positive integers i such that i + 1 lies in a row
strictly below the cell containing i in T .

The major index of T is the sum of its descents:

maj(T ) = ∑
i∈D(T)

i .

Example. The descent set of T is D(T ) = {1,3,4,7} so
maj(T ) = 15 for T = 1 3 6 7 9

2 4 8
5

.

Def. The major index generating function for λ is

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T)



q-Counting Standard Young Tableaux

Example. λ = (5,3,1)

SYT(λ)maj(q) ∶= ∑T∈SYT(λ) qmaj(T) =

q23 + 2q22 + 4q21 + 5q20 + 8q19 + 10q18 + 13q17 + 14q16 + 16q15

+16q14 + 16q13 + 14q12 + 13q11 + 10q10 + 8q9 + 5q8 + 4q7 + 2q6 + q5

Note, at q = 1, we get back 162.



Computation of SYT(λ)maj(q)

Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

where
▸ b(λ) ∶= ∑(i − 1)λi
▸ hc is the hook length of the cell c
▸ [n]q ∶= 1 + q +⋯ + qn−1 = qn−1

q−1
▸ [n]q! ∶= [n]q[n − 1]q⋯[1]q



Corollaries of Stanley’s formula

Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

Corollaries.
1. SYT(λ)maj(q) = SYT(λ′)maj(q).
2. The coefficients of SYT(λ)maj(q) are symmetric.
3. There is a unique min-maj and max-maj tableau of shape λ.



Motivation for q-Counting Standard Young Tableaux

Thm.(Lusztig-Stanley 1979) Given a partition λ ⊢ n, say

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T) = ∑
k≥0

bλ,kqk .

Then bλ,k ∶= #{T ∈ SYT(λ) ∶ maj(T ) = k} is the number of times
the irreducible Sn module indexed by λ appears in the
decomposition of the coinvariant algebra Z[x1, x2, . . . , xn]/I+ in the
homogeneous component of degree k.



Key Questions for SYT(λ)maj(q)

Recall SYT(λ)maj(q) = ∑
T∈SYT(λ)

qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Distribution Question. What patterns do the coefficients in
the list (bλ,0,bλ,1, . . .) exhibit?

Unimodality Question. For which λ, are the coefficients of
SYT(λ)maj(q) unimodal , meaning

bλ,0 ≤ bλ,1 ≤ . . . ≤ bλ,m ≥ bλ,m+1 ≥ . . .?



q-Counting Standard Young Tableaux

Example. λ = (5,3,1)

SYT(λ)maj(q) ∶= ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk =

q23 + 2q22 + 4q21 + 5q20 + 8q19 + 10q18 + 13q17 + 14q16 + 16q15

+16q14 + 16q13 + 14q12 + 13q11 + 10q10 + 8q9 + 5q8 + 4q7 + 2q6 + q5

Notation: (00000 1 2 4 5 8 10 13 14 16 16 16 14 13 10 8 5 4 2 1)



q-Counting Standard Young Tableaux
Examples. (2,2) ⊢ 4: (0 0 1 0 1)

(5,3,1): (00000 1 2 4 5 8 10 13 14 16 16 16 14 13 10 8 5 4 2 1)

(6,4) ⊢ 10: (0 0 0 0 1 1 2 2 4 4 6 6 8 7 8 7 8 6 6 4 4 2 2 1 1)

(6,6) ⊢ 12: (0 0 0 0 0 0 1 0 1 1 2 2 4 3 5 5 7 6 9 7 9 8 9 7 9 6 7 5
5 3 4 2 2 1 1 0 1)

(11,5,3,1) ⊢ 20: (1 3 8 16 32 57 99 160 254 386 576 832 1184
1645 2255 3031 4027 5265 6811 8689 10979 13706 16959 20758
25200 30296 36143 42734 50163 58399 67523 77470 88305 99925
112370 125492 139307 153624 168431 183493 198778 214017
229161 243913 258222 271780 284542 296200 306733 315853
323571 329629 334085 336727 337662 336727 334085 329629
323571 315853 306733 296200 284542 271780 258222 243913
229161 214017 198778 183493 168431 153624 139307 125492
112370 99925 88305 77470 67523 58399 50163 42734 36143
30296 25200 20758 16959 13706 10979 8689 6811 5265 4027
3031 2255 1645 1184 832 576 386 254 160 99 57 32 16 8 3 1)



Visualizing Major Index Generating Functions
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16

Visualizing the coefficients of SYT(5,3,1)maj(q):

(1,2,4,5,8,10,13,14,16,16,16,14,13,10,8,5,4,2,1)



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(11,5,3,1)maj(q).

Question. What type of curve is that?



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(10,6,1)maj(q) along with the
Normal distribution with µ = 34 and σ2 = 98.



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(8,8,7,6,5,5,5,2,2)maj(q)



Cyclotomic Polynomials
Def. The irreducible factors of qn − 1 over the integers are called
cyclotomic polynomials. There is one for each positive integer d ,
given by

Φd(q) =∏
d ∣n

(qd − 1)µ(n/d) = qn − 1
∏c ∣n,c<n Φc(q)

,

where µ(n/d) is the Möbius function given by

µ(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 k = 1
0 k > 1 has repeated prime factors
(−1)` k > 1 is product of ` distinct prime factors.

Fact. Each q-integer [n]q = (qn − 1)/(q − 1) factors into a
product of distinct cyclotomic polynomials

[n]q = 1 + q +⋯ + qn−1 = ∏
1<d ∣n

Φd(q).



Cyclotomic Polynomials

Examples.

Φ1(q) = q − 1
Φ2(q) = q + 1
Φ3(q) = q2 + q1 + 1
Φ4(q) = q2 + 1
Φ5(q) = q4 + q3 + q2 + q1 + 1
Φ6(q) = q2 − q1 + 1
Φ7(q) = q6 + q5 + q4 + q3 + q2 + q1 + 1
Φ8(q) = q4 + 1
Φ9(q) = q6 + q3 + 1

Φ10(q) = q4 − q3 + q2 − q1 + 1



Cyclotomic Polynomials

Bigger Example.

Φ105(q) = q48 + q47 + q46 + q43 − q42 − 2q41 − q40 − q39 + q36 + q35 +
q34 + q33 + q32 + q31 − q28 − q26 − q24 − q22 − q20 + q17 + q16 + q15 +
q14 + q13 + q12 − q9 + −1q8 − 2q7 − q6 − q5 + q2 + q1 + 1



“Fast” Computation of SYT(λ)maj(q)

Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

Trick for conjectures. Cancel all of the cyclotomic factors of
the denominator from the numerator, and then expand the
remaining product.



Existence Question

Recall SYT(λ)maj(q) = ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Cor of Stanley’s formula. For every λ ⊢ n ≥ 1 there is a unique
tableau with minimal major index b(λ) and a unique tableau with
maximal major index (n

2) − b(λ′). These two agree for shapes
consisting of one row or one column, and otherwise they are
distinct.



Existence Question

Recall SYT(λ)maj(q) = ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Cor of Stanley’s formula. For every λ ⊢ n ≥ 1 there is a unique
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Patterns on Tableaux

Example. The min-maj and max-maj tableaux for (6,4,3,3,1).

1 3 4 11 16 17

2 6 7 15

5 9 10

8 13 14

12

1 2 3 5 9 13

4 6 10 14

7 11 15

8 12 16

17

b(λ) = ∑(i − 1)λi = 23 (17
2
) − b(λ′) = 109



Existence Question

Recall SYT(λ)maj(q) = ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Cor of Stanley’s formula. The coefficient of qb(λ)+1 in
SYT(λ)maj(q) = 0 if and only if λ is a rectangle.
If λ is a rectangle with more than one row and column, then
coefficient of qb(λ)+2 is 1.

Question. Are there other internal zeros?



Classifying All Nonzero Fake Degrees

Thm.(Billey-Konvalinka-Swanson, 2018 )
For any partition λ which is not a rectangle,

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T)

has no internal zeros. If λ is a rectangle with at least two rows and
columns, SYT(λ)maj(q) has exactly two internal zeros, one at
degree b(λ) + 1 and the other at degree maxmaj(λ) − 1.

Proof Outline. We identify block and rotation rules on tableaux
giving rise to two posets on SYT(λ)− exceptional cases for
rectangles which is ranked according to maj.
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Strong and Weak Poset on SYT(3,2,1)

          Strong       

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5)(5 4 6 1 2 3)

(3 2 6 1 4 5)(5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(6 2 5 1 3 4) (4 3 6 1 2 5)

(6 3 5 1 2 4)

     Weak            

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5) (5 4 6 1 2 3)

(3 2 6 1 4 5) (5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(4 3 6 1 2 5)(6 2 5 1 3 4)

(6 3 5 1 2 4)



Classifying All Nonzero Fake Degrees

Cor. The irreducible Sn-module indexed by λ appears in the
decomposition of the degree k component of the coinvariant
algebra if and only if bλ,k > 0 as characterized above.

Similar results hold for all Shepard-Todd groups G(m,d ,n).

See arXiv:1809.07386 for more details.



Converting q-Enumeration to Discrete Probability

Distribution Question. What is the limiting distribution(s) for
the coefficients in SYT(λ)maj(q)?

From Combinatorics to Probability.
If f (q) = a0 + a1q + a2q2 +⋯ + anqn where ai are nonnegative
integers, then construct the random variable Xf with discrete
probability distribution

P(Xf = k) = ak

∑j aj
= ak

f (1)
.

If f is part of a family of q-analog of an integer sequence, we can
study the limiting distributions.



Converting q-Enumeration to Discrete Probability

Example. For SYT(λ)maj(q) = ∑bλ,kqk , define the integer
random variable Xλ[maj] with discrete probability distribution

P(Xλ[maj] = k) =
bλ,k

∣SYT(λ)∣
.

We claim the distribution of Xλ[maj] “usually” is approximately
normal for most shapes λ. Let’s make that precise!



Standardization

Thm.(Adin-Roichman, 2001)
For any partition λ, the mean and variance of Xλ[maj] are

µλ =
(∣λ∣2 ) − b(λ′) + b(λ)

2
= b(λ) + 1

2

⎡⎢⎢⎢⎢⎣

∣λ∣

∑
j=1

j − ∑
c∈λ

hc

⎤⎥⎥⎥⎥⎦
,

and

σ2
λ =

1
12

⎡⎢⎢⎢⎢⎣

∣λ∣

∑
j=1

j2 − ∑
c∈λ

h2
c

⎤⎥⎥⎥⎥⎦
.

Def. The standardization of Xλ[maj] is

X∗
λ [maj] = Xλ[maj] − µλ

σλ
.

So X∗
λ [maj] has mean 0 and variance 1 for any λ.



Asymptotic Normality

Def. Let X1,X2, . . . be a sequence of real-valued random variables
with standardized cumulative distribution functions
F1(t),F2(t), . . .. The sequence is asymptotically normal if

∀t ∈ R, lim
n→∞

Fn(t) =
1√
2π ∫

t

−∞
e−x2/2 = P(N < t)

where N is a Normal random variable with mean 0 and variance 1.

Question. In what way can a sequence of partitions approach
infinity?
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The Aft Statistic

Def. Given a partition λ = (λ1, . . . , λk) ⊢ n, let

aft(λ) ∶= n −max{λ1, k}.

Example. λ = (5,3,1) then aft(λ) = 4.

● ● ●
●

Look it up: Aft is now on FindStat as St001214



Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)

Suppose λ(1), λ(2), . . . is a sequence of partitions, and let
XN ∶= Xλ(N)[maj] be the corresponding random variables for the
maj statistic. Then, the sequence X1,X2, . . . is asymptotically
normal if and only if aft(λ(N)) → ∞ as N →∞.

Question. What happens if aft(λ(N)) does not go to infinity as
N →∞?
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Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)
Let λ(1), λ(2), . . . be a sequence of partitions. Then (Xλ(N)[maj]∗)
converges in distribution if and only if

(i) aft(λ(N)) → ∞; or
(ii) ∣λ(N)∣ → ∞ and aft(λ(N)) is eventually constant; or

(iii) the distribution of X∗

λ(N)
[maj] is eventually constant.

The limit law is N(0,1) in case (i), Σ∗
M in case (ii), and discrete in

case (iii).

Here ΣM denotes the sum of M independent identically distributed
uniform [0,1] random variables, known as the Irwin–Hall
distribution or the uniform sum distribution.



Distribution Question: From Combinatorics to Probability

Example. λ = (100,2) looks like the distribution of the sum of
two independent uniform random variables on [0,1]:

0 50 100 150 200
0

10

20

30

40

50



Distribution Question: From Combinatorics to Probability

Example. λ = (100,2,1) looks like the distribution of the sum of
three independent uniform random variables on [0,1]:

50 100 150 200 250 300

500

1000

1500

2000

2500



Distribution Question: From Combinatorics to Probability

Example. λ = (100,3,2) looks like the normal distribution, but
not quite!

100 200 300 400 500

5e5

1e6

1.5e6

2e6

2.5e6



Proof ideas: Characterize the Moments and Cumulants

Definitions.
▸ For d ∈ Z≥0, the dth moment

µd ∶= E[Xd]

▸ The moment-generating function of X is

MX(t) ∶= E[etX ] =
∞

∑
d=0

µd
td

d!
,

▸ The cumulants κ1, κ2, . . . of X are defined to be the
coefficients of the exponential generating function

KX(t) ∶=
∞

∑
d=1

κd
td

d!
∶= log MX(t) = logE[etX ].



Nice Properties of Cumulants

1. (Familiar Values) The first two cumulants are κ1 = µ, and
κ2 = σ2.

2. (Shift Invariance) The second and higher cumulants of X
agree with those for X − c for any c ∈ R.

3. (Homogeneity) The dth cumulant of cX is cdκd for c ∈ R.

4. (Additivity) The cumulants of the sum of independent
random variables are the sums of the cumulants.

5. (Polynomial Equivalence) The cumulants and moments are
determined by polynomials in the other sequence.



Examples of Cumulants and Moments

Example. Let X = N(µ,σ2) be the normal random variable with
mean µ and variance σ2. Then the cumulants are

κd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ d = 1,
σ2 d = 2,
0 d ≥ 3.

and for d > 1,

µd =
⎧⎪⎪⎨⎪⎪⎩

0 if d is odd,
σd(d − 1)!! if d is even.

.

Example. For a Poisson random variable X with mean µ, the
cumulants are all κd = µ, while the moments are µd = ∑d

i=1 µ
iSi ,d .



Cumulants for Major Index Generating Functions

Thm.(Billey-Konvalinka-Swanson, 2019)
Let λ ⊢ n and d ∈ Z>1. If κλd is the dth cumulant of Xλ[maj], then

κλd = Bd
d

⎡⎢⎢⎢⎢⎣

n
∑
j=1

jd − ∑
c∈λ

hd
c

⎤⎥⎥⎥⎥⎦
(1)

where B0,B1,B2, . . . = 1, 1
2 ,

1
6 ,0,−

1
30 ,0,

1
42 ,0, . . . are the Bernoulli

numbers (OEIS A164555 / OEIS A027642).

Remark. We use this theorem to prove that as aft approaches
infinity the standardized cumulants for d ≥ 3 all go to 0 proving the
Asymptotic Normality Theorem.

Remark. Note, κλ2 is exactly the Adin-Roichman variance formula.
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Cumulants of certain q-analogs
Thm.(Chen–Wang–Wang-2008 and Hwang–Zacharovas-2015)
Suppose {a1, . . . , am} and {b1, . . . ,bm} are multisets of positive
integers such that

f (q) =
∏m

j=1[aj]q

∏m
j=1[bj]q

= ∑ ckqk ∈ Z≥0[q]
.
Let X be a discrete random variable with P(X = k) = ck/f (1).
Then the dth cumulant of X is

κd = Bd
d

m
∑
j=1

(ad
j − bd

j )

where Bd is the dth Bernoulli number (with B1 = 1
2).

Example. This theorem applies to

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T) =
qb(λ)[n]q!
∏c∈λ[hc]q



Corollaries of the Distribution Theorem

1. Asymptotic normality also holds for block diagonal skew
shapes with aft going to infinity.

2. New proof of asymptotic normality of
[n]q! = ∑w∈Sn qmaj(w) = ∑w∈Sn qinv(w) due to Feller (1944).

3. New proof of asymptotic normality of q-multinomial
coefficients due to Diaconis (1988),
Canfield-Jansen-Zeilberger (2011).

4. New proof of asymptotic normality of q-Catalan numbers due
to Chen-Wang-Wang(2008).

Question. Using Morales-Pak-Panova q-hook length formula, can
we prove an asymptotic normality for most skew shapes?
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Cyclotomic Generating Functions

Def. A polynomial f (q) with nonnegative integer coefficients is a
cyclotomic generating function provided it satisfies one of the
following equivalent conditions:

(i) (Rational form.) There are multisets {a1, . . . , am} and
{b1, . . . ,bm} of positive integers and α,β ∈ Z≥0 such that

f (q) = αqβ ⋅
m
∏
j=1

[aj]q

[bj]q
= αqβ ⋅

m
∏
j=1

1 − qaj

1 − qbj
. (2)

(ii) (Cyclotomic form.) The polynomial f (q) can be written as a
non-negative integer times a product of cyclotomic
polynomials and factors of q.

(iii) (Complex form.) The complex roots of f (q) are each either a
root of unity or zero.
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(ii) (Cyclotomic form.) The polynomial f (q) can be written as a
non-negative integer times a product of cyclotomic
polynomials and factors of q.

(iii) (Complex form.) The complex roots of f (q) are each either a
root of unity or zero.
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Cyclotomic Generating Functions

More examples of cyclotomic generating functions:.
1. Stanley: sλ(1,q,q2, . . . ,qm).

2. Björner-Wachs: q-hook length formula for forests.

3. Macaulay: Hilbert series of polynomial quotients
k[x1, . . . , xn]/(θ1, θ2, . . . , θn) where deg(xi) = bi , deg(θi) = ai ,
and (θ1, θ2, . . . , θn) is a homogeneous system of parameters
k[x1, . . . , xn]/.

4. Chevalley: Length generating function restricted to minimum
length coset representatives of a finite reflection group modulo
a parabolic subgroup.



Cyclotomic Generating Functions

Remark. Corresponding with each cyclotomic generating function
f (q), there is a discrete random variable Xf supported on Z≥0 with
probability generating function f (q)/f (1) and higher cumulants for
d ≥ 2,

κf
d = Bd

d

m
∑
j=1

(ad
j − bd

j ).

Therefore, we can study asymptotics for interesting sequences of of
cyclotomic generating functions much like SYT.



Recent Progress

Thm. There exists statistics determining asymptotic normality
and other limiting distributions in the following cases:

1. Stanley: sλ(1,q,q2, . . . ,qm).

2. Björner-Wachs: q-hook length formula for forests.

3. Iwahori-Matsumoto, Stembridge-Waugh, Zabrocki: Coxeter
length generating function restricted to coset representatives
of the extended affine Weyl group of type An−1 mod
translations by coroots. The associated statistic is baj − inv.



Beyond Cyclotomic Generating Functions
Another family of polynomials:

Thm.(Douvropoulos, N. Williams conjecture) There exists a cyclic
sieving phenomena for factorizations of Coxeter elements along
with the q-analog of nn−2 given by [n]q2⋯[n]qn−1

The coefficients of [n]q2⋯[n]qn−1 also appear to be normal...
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Local Limit Conjecture

Conjecture. Let λ ⊢ n > 25. Uniformly for all n and for all
integers k, we have

∣P(Xλ[maj] = k) −N(k;µλ, σλ)∣ = O ( 1
σλ aft(λ)

)

where N(k;µλ, σλ) is the density function for the normal
distribution with mean µλ and variance σλ.

The conjecture has been verified for n ≤ 50 and aft(λ) > 1.

Up to n = 50, the constant 1/9 works.

At n = 50, 1/10 does not.



Unimodality Question

Conjecture. The polynomial SYTmaj(q) is unimodal if λ has at
least 4 corners. If λ has 3 corners or fewer, then SYTmaj(q) is
unimodal except when λ or λ′ is among the following partitions:

1. Any partition of rectangle shape that has more than one row
and column.

2. Any partition of the form (k,2) with k ≥ 4 and k even.
3. Any partition of the form (k,4) with k ≥ 6 and k even.
4. Any partition of the form (k,2,1,1) with k ≥ 2 and k even.
5. Any partition of the form (k,2,2) with k ≥ 6.
6. Any partition on the list of 40 special exceptions of size at

most 28.



Unimodality Question

Special Exceptions.

(3,3,2), (4,2,2), (4,4,2), (4,4,1,1),
(5,3,3), (7,5), (6,2,1,1,1,1),

(5,5,2), (5,5,1,1), (5,3,2,2), (4,4,3,1),
(4,4,2,2), (7,3,3), (8,6), (6,6,2),

(6,6,1,1), (5,5,2,2), (5,3,3,3), (4,4,4,2),
(11,5), (10,6), (9,7), (7,7,2),

(7,7,1,1), (6,6,4), (6,6,1,1,1,1), (6,5,5),
(5,5,3,3), (12,6), (11,7), (10,8),

(15,5), (14,6), (11,9), (16,6), (12,10), (18,6),
(14,10), (20,6), (22,6).



Conclusion

Many Thanks!

To you all for listening, to the organizers of this workshop, and to
BIRS for creating the mathematical atmosphere.
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