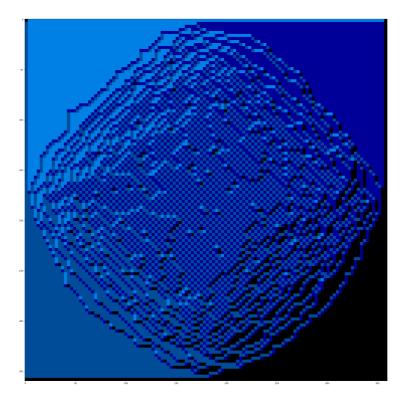
From infinite random matrices over finite fields to square ice

Leonid Petrov

University of Virginia

March 13, 2019



- Infinite binary sequences
- Infinite triangular random matrices over a finite field

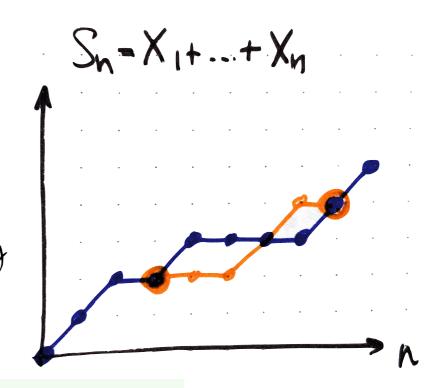
(toy example)

Exchangeable random binary sequences

Exchangeability

A random sequence X_1, X_2, \ldots , where $X_i \in \{0, 1\}$, is called **exchangeable** if its distribution does not change under (finitary) permutations of indices.

Invariance under uniform resampling given the boundary conditions



Exchangeable distributions form a convex set

$$\mu = \alpha \mu_1 + (1 - \alpha) \mu_2, \qquad \alpha \in [0, 1]$$

Extreme exchangeable distributions are the μ 's which cannot be decomposed as above with $\mu_{1,2} \neq \mu$ and $\alpha \neq 0,1$

Classification of extreme exchangeable distributions

Extreme exchangeable distributions are precisely the Bernoulli product measures μ_p indexed by $p \in [0,1]$

Under μ_p , the X_i 's are independent with $\mathbb{P}(X_i = 1) = p$.

[de Finetti 1930s, Hewitt-Savage 1955]

Classification of extreme exchangeable distributions

Extreme exchangeable distributions are precisely the Bernoulli product measures μ_p indexed by $p \in [0,1]$

Under μ_p , the X_i 's are independent with $\mathbb{P}(X_i = 1) = p$.

How to sample

To sample an exchangeable sequence, first pick random p from a mixing distribution ν on [0,1]

Then, given p, sample independent X_i 's according to μ_p

Example

The uniform mixing distribution ν on [0,1] corresponds to the "Polya urn":

for each n, X_1, \ldots, X_n has a uniformly random number $k \in \{0, \ldots, n\}$ of zeroes and ones (**homework problem**: how to pass from n to n + 1?)

Parameter recovery: Law of Large Numbers

$$\lim_{n \to +\infty} \frac{X_1 + \ldots + X_n}{n} = \nu \quad \text{in distribution and a.s.}$$

clear for extreme measures and in the uniform example; holds in general, too

Ergodic approach for describing "boundaries"

- 1. Want to classify probability distributions with certain symmetry and sequential structure
- 2. Distributions form a convex set
- 3. Classify *extreme* distributions using the sequential structure (each infinite-level extreme is a limit of finite-level ones)
- 4. Each distribution is a convex combination of extremes
- 5. Law of Large Numbers for parameter recovery (the first focus of the tulk)
- 6. Select non-extreme distributions are very interesting (won't discuss this in the talk)

The ergodic approach was employed by Vershik and Kerov in 1970-80s to apply to representation theory of "big" groups:

- ullet the infinite symmetric group $S(\infty)$ [Edrei 1950s, Thoma 1964]
- ullet the infinite-dimensional unitary group $U(\infty)$ [Edrei 1950s, Voiculescu 1976], Vadim's talk on Monday

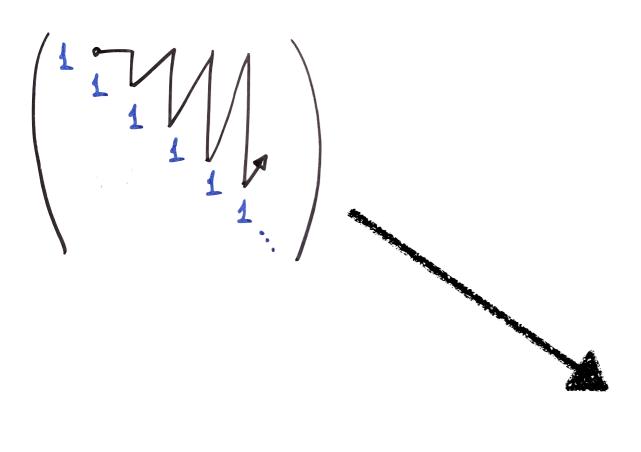
Related applications include the study of ergodic central measures on matrices, both Hermitian/ \mathbb{C} , and over **finite fields**

Infinite binary sequences

(different "g-analogue" of the u(∞)/s(∞) rep theory)

• Infinite triangular random matrices

over a finite field



Another symmetry of the 1/2 i.i.d. coin flip sequence!

$$(X,Y) \stackrel{d}{=} (X+Y,Y) \mod 2$$

```
0 \ 0 \ 0
           0 \ 0 \ 0 \ 1 \ 0
```

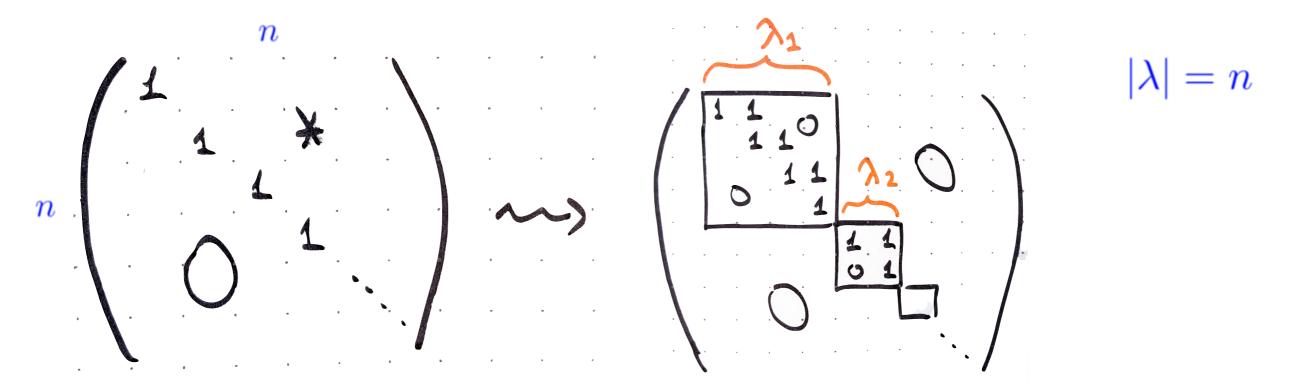
Random triangular matrices over finite fields

 $\mathbb{F}_{\mathfrak{q}}$ — finite field ($\mathfrak{q}=2$ when $\mathbb{F}_2=\{0,1\}$ suffices)

 \mathbb{U} — group of infinite uni upper triangular matrices over $\mathbb{F}_{\mathfrak{q}}$

Each $n \times n$ triangular matrix is conjugate to a Jordan form by an element of $GL_n(\mathbb{F}_{\mathfrak{q}})$

Jordan forms are encoded by Young diagrams $\lambda = (\lambda_1 \ge \lambda_2 \ge ... \ge 0)$, $\lambda_i \in \mathbb{Z}$



 $GL_{\infty}(\mathbb{F}_{\mathfrak{q}})$ — group of infinite matrices which finitely differ from the identity

Exchangeability analogue (symmetry of measures)

A probability Borel measure μ on \mathbb{U} is called **central** if $\mu(M) = \mu(gMg^{-1})$ for all measurable $M \subset \mathbb{U}$ and $g \in GL_{\infty}(\mathbb{F}_{\mathfrak{q}})$ such that $gMg^{-1} \subset \mathbb{U}$

Exchangeability analogue

A probability Borel measure μ on \mathbb{U} is called **central** if $\mu(M) = \mu(gMg^{-1})$ for all measurable $M \subset \mathbb{U}$ and $g \in GL_{\infty}(\mathbb{F}_{\mathfrak{q}})$ such that $gMg^{-1} \subset \mathbb{U}$

Example: uniform product measure on \mathbb{U} for which X_{ij} , i < j, are independent $\in \mathbb{F}_{\mathfrak{q}}$

$$g \in GL_{\infty}(\mathbb{F}_{\mathfrak{q}})$$

(informally)

Exercise: for X, Y iid from \mathbb{F}_2 , we have $(X, Y) \stackrel{d}{=} (X + Y, Y)$

Central measures form a convex set. Goal: classify extreme central measures

- Related to representation theory of $GL_n(\mathbb{F}_{\mathfrak{q}})$ as $n \to \infty$ [Vershik-Kerov 90s+] [Gorin-Kerov-Vershik 2012]
- At a level of (some) tools, is a one-parameter deformation of the representation theory of $S(\infty)$ (the latter corresponds to $\mathfrak{q} \to \infty$)
- The answer was conjectured by Kerov in 1992 and proven by Matveev in 2017 (together with a Macdonald generalization which adds yet one more parameter)

Theorem

Extreme central measures are in one to one correspondence with tuples

$$\alpha_1 \ge \alpha_2 \ge \ldots \ge 0, \qquad \beta_1 \ge \beta_2 \ge \ldots \ge 0, \qquad \gamma \ge 0$$

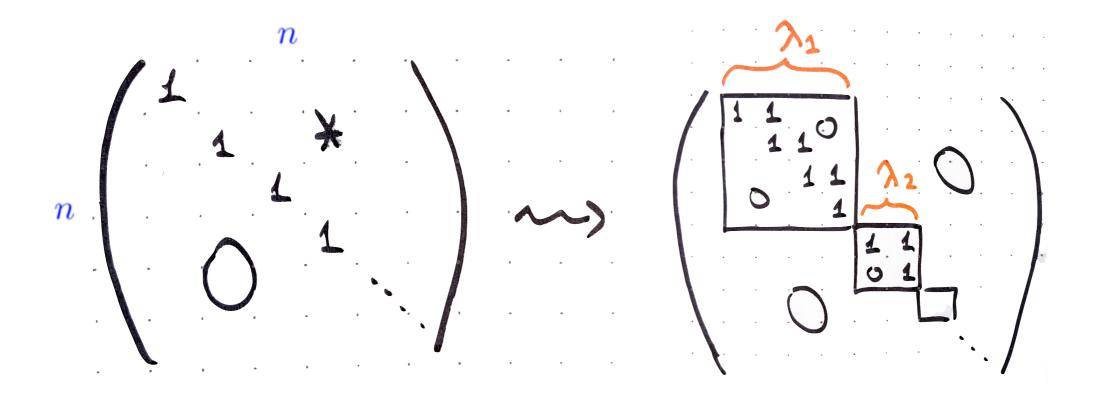
such that

$$\frac{\gamma}{1-t} + \sum_{i \ge 1} \left(\alpha_i + \frac{\beta_i}{1-t} \right) = 1$$

 $t := 1/\mathfrak{q}$

(t=0 - infinite symmetric group)

Realization of extreme central measures



Central measures are determined by a sequence of random Jordan block structures $\lambda(n)$ of $n \times n$ corners, with $|\lambda(n)| = \lambda_1(n) + \lambda_2(n) + \ldots + \lambda_n(n)$, $n = 1, 2, \ldots$

Let
$$\omega = (\alpha; \beta; \gamma)$$
 where $\alpha = (\alpha_1 \ge \alpha_2 \ge \dots \ge 0)$, $\beta = (\beta_1 \ge \beta_2 \ge \dots \ge 0)$, $\gamma \ge 0$, and $\frac{\gamma}{1-t} + \sum_{i \ge 0} \left(\alpha_i + \frac{\beta_i}{1-t}\right) = 1$

$$\omega_0$$
 be $\alpha_i=\beta_i=0$, $\gamma=1-t$

 $t := 1/\mathfrak{q}$

Central measures are determined by a sequence of random Jordan block structures $\lambda(n)$ of $n \times n$ corners, with $|\lambda(n)| = \lambda_1(n) + \lambda_2(n) + \ldots + \lambda_n(n)$, $n = 1, 2, \ldots$

Realization of extreme central measures

Prob
$$(\lambda(n) = \nu) = \frac{1}{Z} P_{\nu}(\omega_0) Q_{\nu}(\omega)$$

 $P_{
u},Q_{
u}$ — Hall-Littlewood symmetric polynomials

Uniform measure is extreme and corresponds to

$$\alpha_i = (1 - \mathfrak{q}^{-1})\mathfrak{q}^{1-i}$$
, $i = 1, 2, ...; \beta_j = \gamma = 0$

Example of a Hall-Littlewood polynomial

$$P_{(4,0)}(x_1, x_2) = x_1^4 + x_2^4 + (1 - t)(x_1^3 x_2 + x_1 x_2^3) + (1 - t)x_1^2 x_2^2$$

$$Q_{\nu} = b_{\nu}(t) P_{\nu}$$

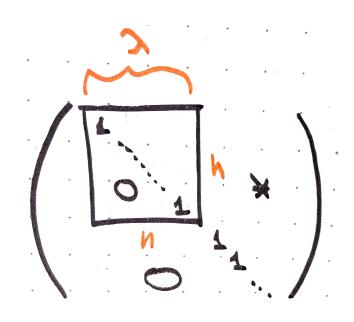
$$\text{Prob}(\lambda(n) = \nu) = \frac{1}{Z} P_{\nu}(\omega_0) Q_{\nu}(\omega)$$

Couple of useful facts about Hall-Littlewood polynomials

$$\sum_{\nu} P_{\nu}(x_1, \dots, x_N) Q_{\nu}(y_1, \dots, y_M) = \prod_{i=1}^{N} \prod_{j=1}^{M} \frac{1 - tx_i y_j}{1 - x_i y_j}$$

$$t = 0 \text{ -- Schur polynomials } s_{\lambda}(x_1, \dots, x_N) = \frac{\det[x_i^{\lambda_j + N - j}]_{i,j = 1}^N}{\prod\limits_{1 \leq i < j \leq N} (x_i - x_j)}$$

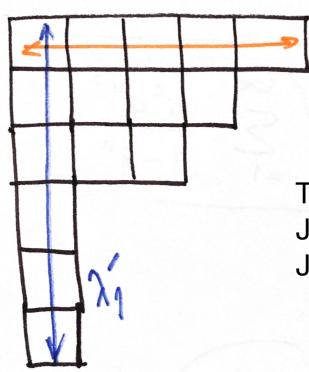
De Finetti	Matrices over finite fields
Random infinite binary sequences	Random infinite uni-uppertriangular matrices
Exchangeability (invariance under permutations)	Centrality (invariance under conjugations)
Extremes are parametrized by 1-d space	Extremes are parametrized by ∞-d space
$p \in [0, 1]$	$\alpha = (\alpha_1 \ge \alpha_2 \ge \dots \ge 0), \ \beta = (\beta_1 \ge \beta_2 \ge \dots \ge 0), \ \gamma \ge 0$ such that $\frac{\gamma}{1-t} + \sum_{i \ge 0} \left(\alpha_i + \frac{\beta_i}{1-t}\right) = 1$
Realization of extremes: iid Bernoulli (coin tossing)	Realization of extremes through Hall-Littlewood polynomials (example: uniform Bernoulli product measure on uni-uppertriangular matrices)
Reconstruction of parameters: classical Law of Large Numbers for Bernoulli trials	Reconstruction of parameters: Law of Large Numbers [Bufetov-P. 2014]



Theorem [Bufetov-P. 2014]

Take an extreme measure μ corresponding to $\omega = (\alpha; \beta; \gamma)$. Let $\lambda(n)$ be the Jordan block structure of the $n \times n$ corner.

Then as
$$n \to +\infty$$
, $\dfrac{\lambda_i(n)}{n} \to \alpha_i, \quad \dfrac{\lambda_i'(n)}{n} \to \dfrac{\beta_i}{1-n}$ rows columns



Theorem describes asymptotic sizes of large Jordan blocks & asymptotic frequencies of small Jordan blocks for matrices from extreme measures

Earlier results

- Uniform upper triangular matrices [Borodin 1995], answering a question of A.A.Kirillov
- t = 0, asymptotic character theory of S(∞) [Vershik-Kerov 1980s]

Law of Large Numbers: idea of proof

a randomization of the Robinson-Schensted-Knuth [O'Connell-Pei 2012], [Borodin-P. 2013]

- * 1. Construct a (randomized) algorithm for exact sampling of $\lambda(n)$ coming from the extreme measure μ_{ω}
 - 2. Analyze the algorithm probabilistically to get limiting frequencies of rows and columns

The Young diagrams $\lambda(n)$ are sampled by constructing random Young tableaux.

$$T(k+1) = T(k) \leftarrow a$$

Insertions are **randomized**; for t = 0 reduce to the classical Robinson-Schensted-Knuth ones (with Vershik–Kerov modifications)

2	2	3	5	0.1
3	5	5	$\hat{7}$	0.34
5	$\hat{5}$			
$\hat{2}$	$\hat{5}$			
$\hat{2}$				

New letters appear independently using $\alpha_j, \beta_j, \gamma$ parameters

 $\alpha\beta\gamma$ -tableaux (generalize semistandard Young tableaux)

[Vershik-Kerov 1986]

Take random words with independent letters (the sum of probabilities is 1):

$$\mathbb{P}(k) = \alpha_k, \qquad \mathbb{P}(\hat{k}) = \frac{\beta_k}{1-t}, \qquad \frac{\gamma}{1-t}$$
 — continuous part

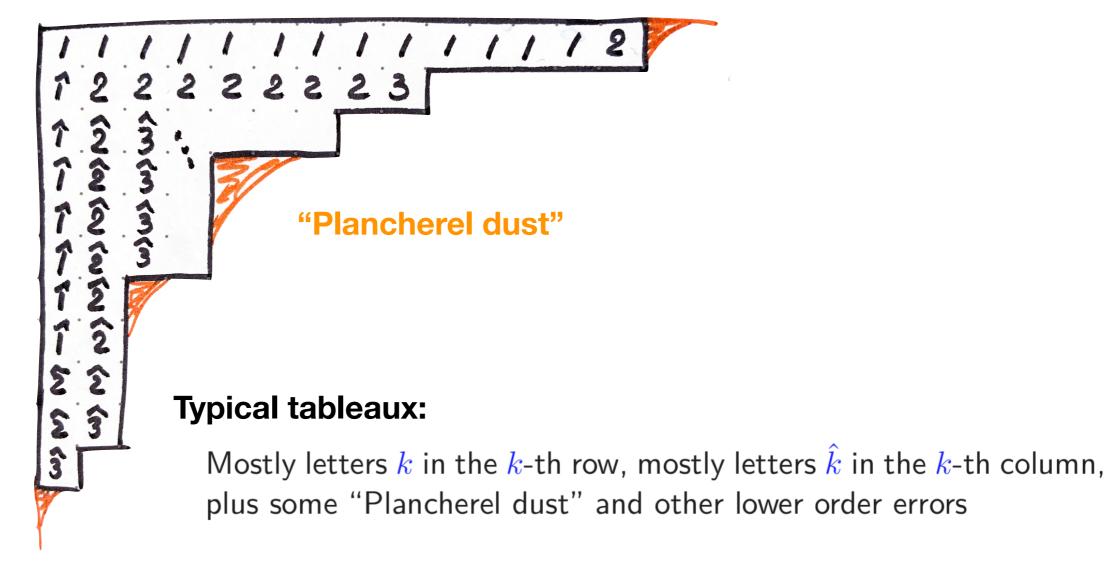
After n steps, the Hall-Littlewood RSK sampling produces a random Young diagram $\lambda(n)$, the shape of the random tableau

Theorem [Borodin-P. 2013], [Bufetov-P. 2014]

The distribution of $\lambda(n)$ coincides with the Jordan block structure of the $n \times n$ corner of the random matrix coming from the extreme measure μ_{ω} .

2	2	3	15	0.1
3	5	5	$\hat{7}$	0.34
5	$\hat{5}$			
$\hat{2}$	$\hat{5}$			
$\hat{2}$,		

Probabilistic consequences



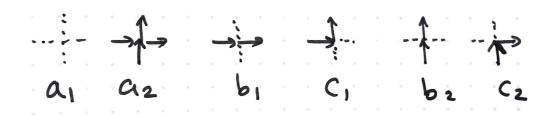
This leads to the **Law of Large Numbers** for the Jordan blocks structure of extreme central measures

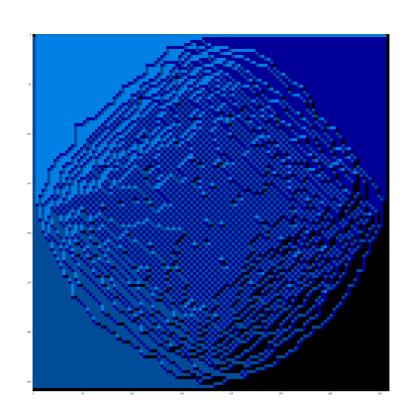
Remark

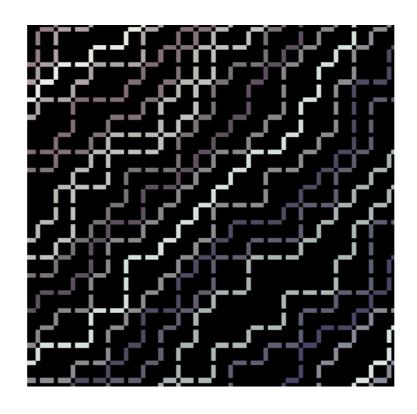
Under additional restrictions (all parameters are distinct and $\gamma = 0$), one should also get a **Central Limit Theorem** with Gaussian fluctuations of order \sqrt{n}

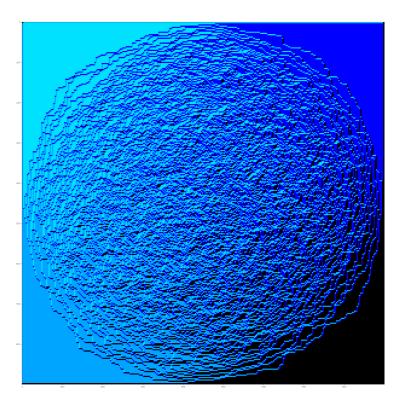
The fluctuations of each row and column are almost independent, modulo that the number of boxes is fixed

Towards the six vertex model



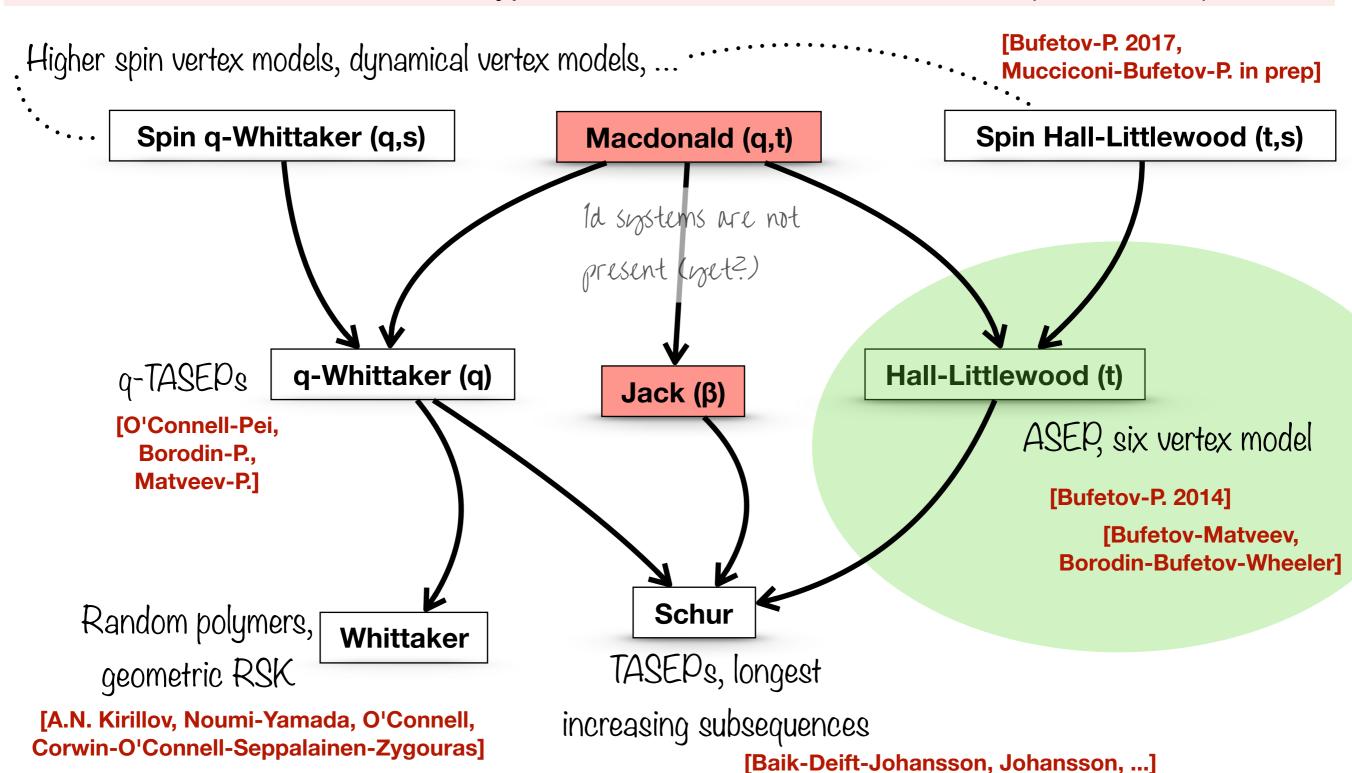




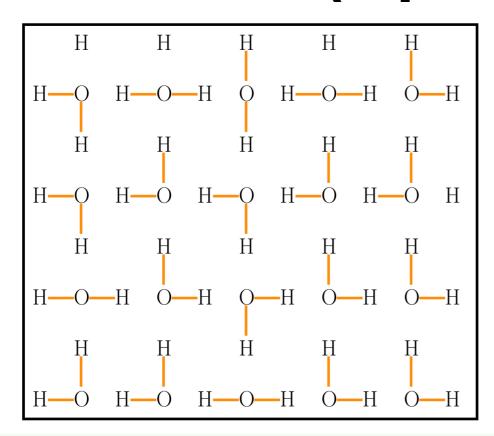


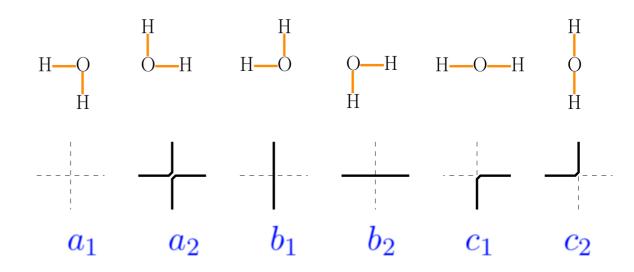
For about 20 years now, **Robinson-Schensted-Knuth** type combinatorial algorithms are providing exact observables of *1-dimensional interacting particle systems* and related models through Schur functions

Less than a decade ago, a new wave has started involving deformations of Schur functions. The Robinson-Schensted-Knuth type constructions are also deformed (randomized)



Six vertex (square ice) model



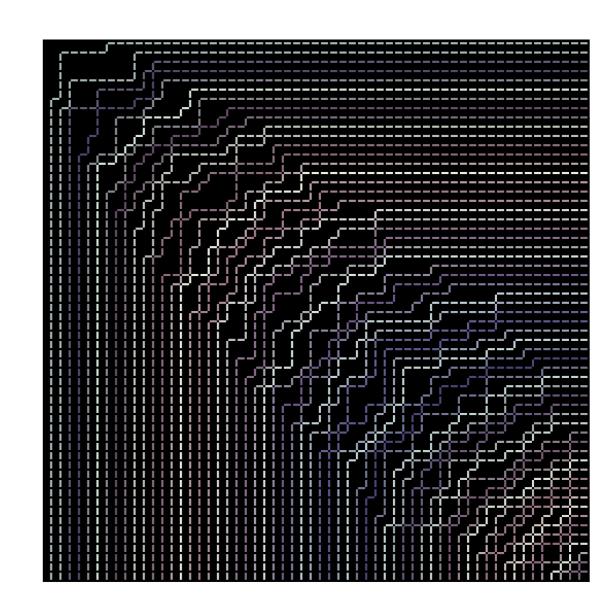


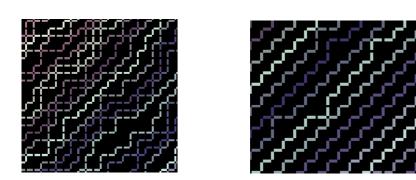
Stochastic six vertex model

[Gwa-Spohn 1992, Borodin-Corwin-Gorin 2014]

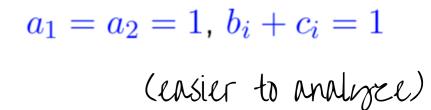
$$\sum_{\text{outgoing configurations}} W(\rightarrow;?) = 1$$

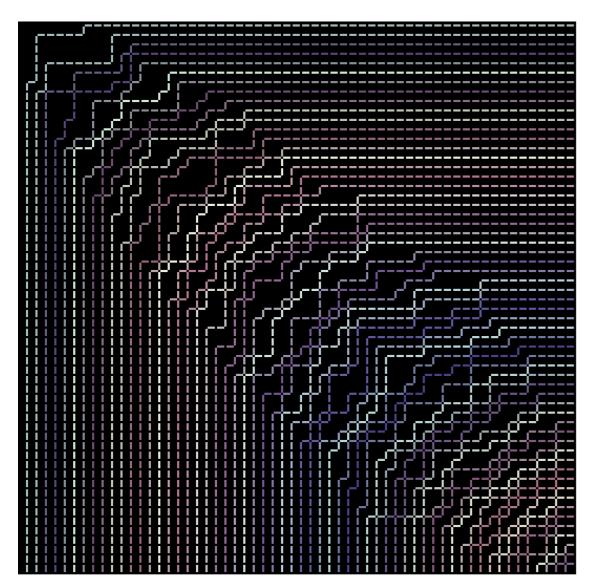
- The system is a Markov process
 (= stochastic interacting particle system)
- Partition functions are products, not determinants
- This and many other stochastic vertex models are exactly solvable to the point of asymptotics



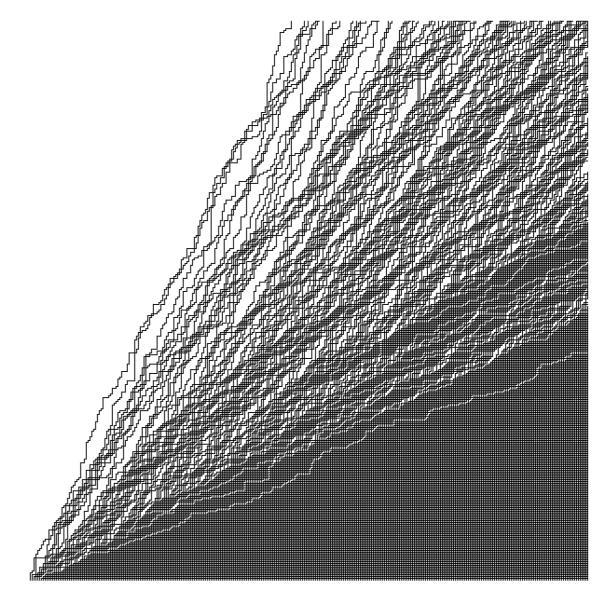


(richer behavior)





 $a_1=a_2=b_2=c_1=c_2=1,\ b_1=3,$ domain wall boundary conditions



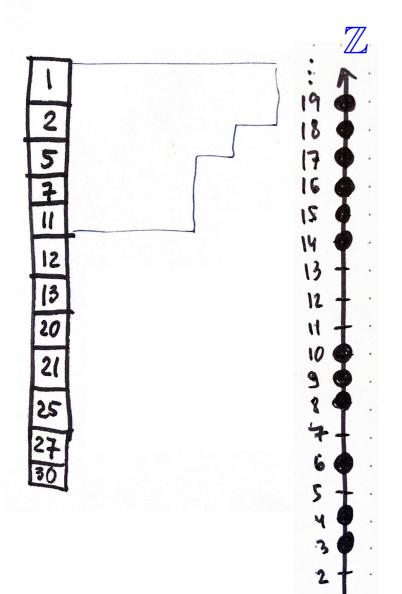
stochastic six vertex model in a quadrant

Marginally Markovian 1d projection

in the Hall-Littlewood Robinson-Schensted insertion

Keep only parameters $\alpha_1, \alpha_2, \ldots$, and let $\beta_j = \gamma = 0$ The Young tableau is semistandard

Defects in the first column of the tableau = particles on \mathbb{Z}

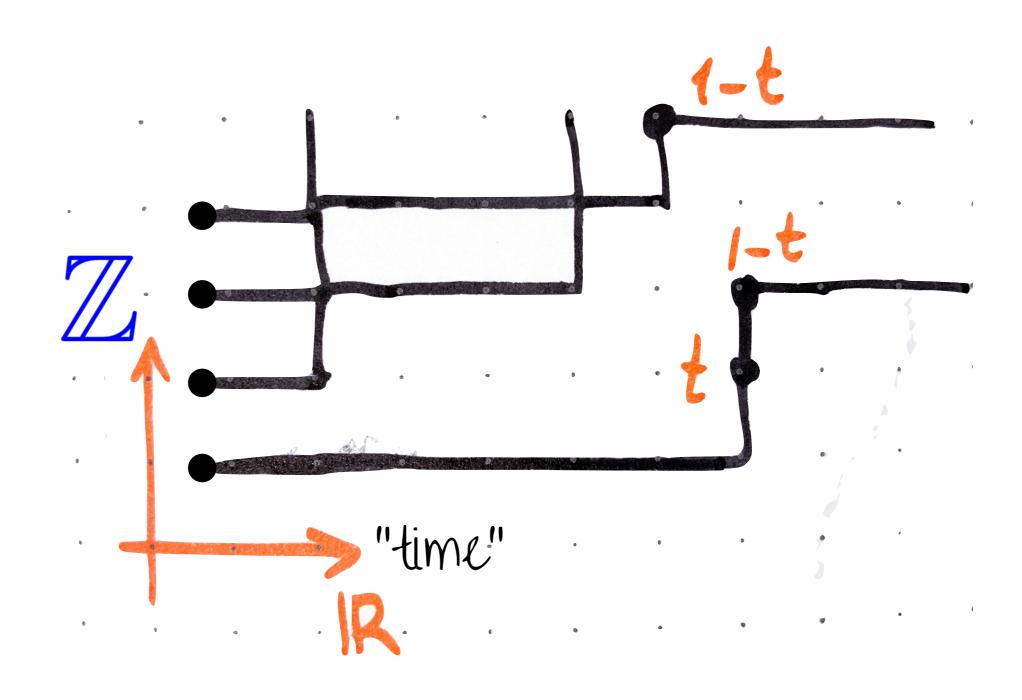


- RSK-insert $k \Leftrightarrow \text{clock rings at site } k \text{ (rate } \alpha_k)$
- \bullet if there is a particle at k, it wakes up and jumps up by one
- if the destination is occupied, the next particle is pushed by one and wakes up, the pusher stops
- the active particle moves through the empty space with probability t per step; stops with probability 1-t

Called the half-continuous stochastic six vertex model

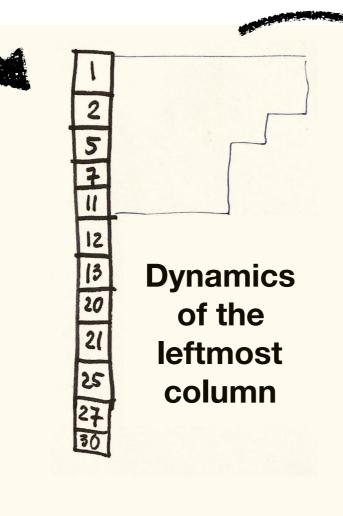
Asymptotics (homogeneous α) - [Ghosal 2017]

Get a continuous-time Markov chain on particle configurations. Plot trajectories of particles:

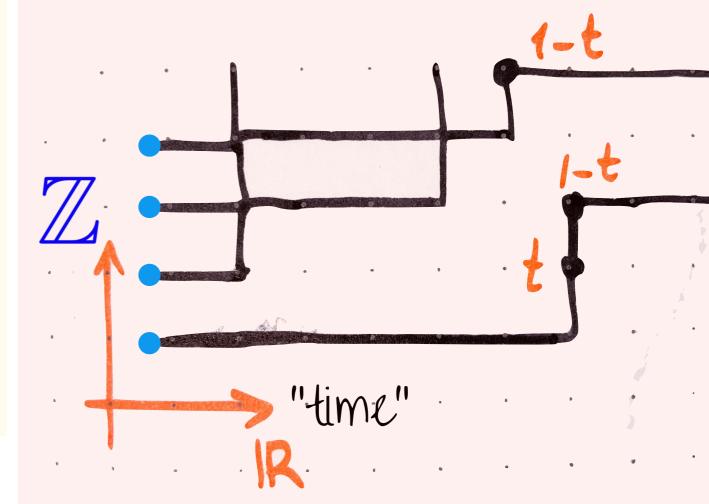


RSK type sampling of extreme central measure

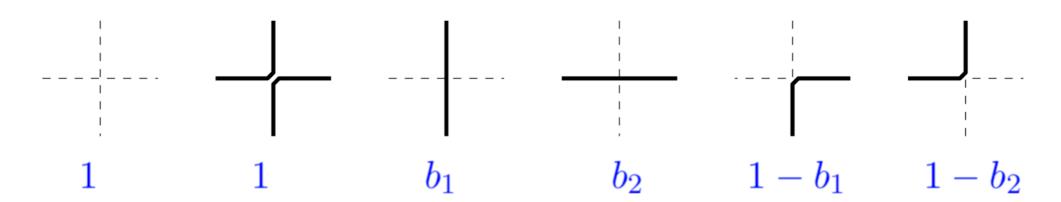
$$\beta_j = \gamma = 0$$



Trajectories of particles:

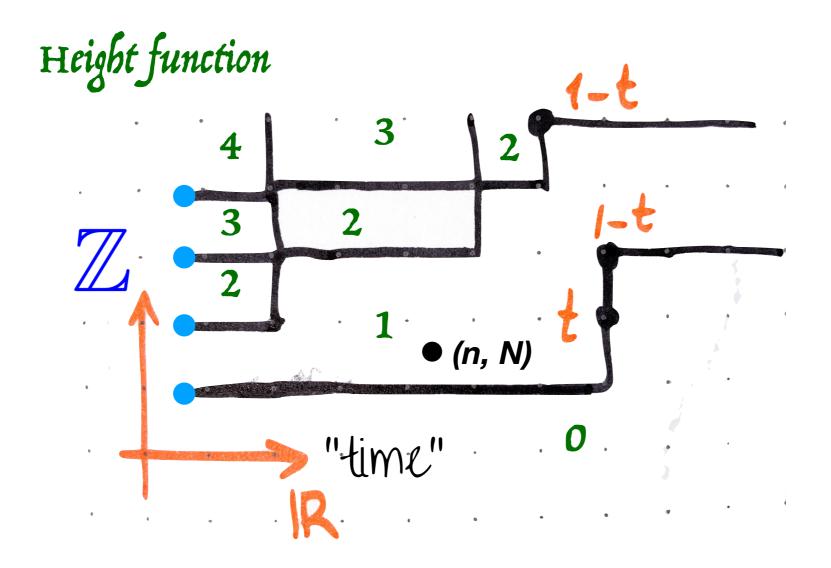


This is the same as...



 $b_2 \rightarrow 1$, Poisson type limit in the horizontal direction $b_1 = t$ fixed

Half-continuous stochastic six vertex model



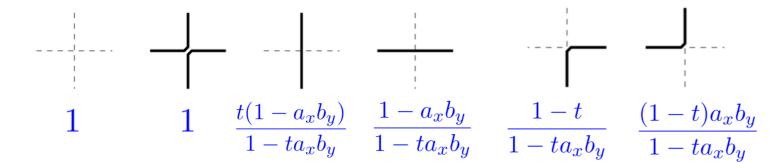
Theorem which follows from the constructions:

 $N-\lambda_1'(n)$, where λ comes from $\omega=((\alpha_1,\ldots,\alpha_N);0;0)$, is the height function of the half-continuous stochastic six vertex model at (n,N), where n is the number of (independent) jumps occurred

The distribution of $\lambda(n)$ is expressed through the Hall-Littlewood symmetric polynomials, which allows to write down explicit distributional formulas for $\lambda'_1(n)$, and obtain asymptotics

Summary for the fully discrete, inhomogeneous [Borodin-Corwin-Gorin 2014], [Borodin-P. 2016], stochastic six vertex model

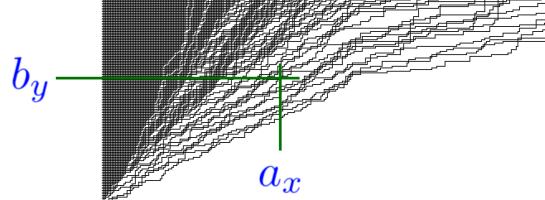
[Bufetov-Matveev 2017], [Bufetov-P. 2017]



Theorem

The height function at (x, y) is distributed as $y - \lambda'_1$, where λ has the Hall-Littlewood distribution

$$\propto P_{\lambda}(a_1,\ldots,a_x)Q_{\lambda}(b_1,\ldots,b_y)$$



Theorem (t-moment formula) $\forall \ell = 1, 2, ...$

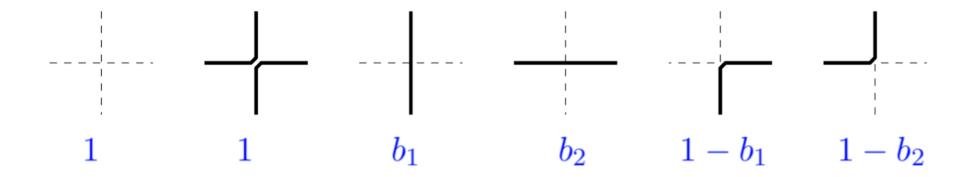
$$\mathbb{E}t^{\ell \cdot h(x,y)} = t^{\frac{\ell(\ell-1)}{2}} \oint \dots \oint \prod_{1 \le i < j \le \ell} \frac{w_i - w_j}{w_i - tw_j} \prod_{i=1}^{\ell} \left(\frac{dw_i}{2\pi \mathbf{i} w_i} \prod_{r=1}^{x} \frac{a_r - w_i}{a_r - tw_i} \prod_{r=1}^{y} \frac{tw_i - b_r}{w_i - b_r} \right)$$

Contours are around $\{b_i\}$ and 0 (in a certain order)

thas many proofs....

- A la [Tracy-Widom 2007+] for ASEP based on coordinate Bethe Ansatz
- Yang-Baxter equation and Cauchy identities via q-correlations
- Randomized Robinson-Schensted-Knuth plus Macdonald difference operators for Hall-Littlewood polynomials
- Randomization of the Yang-Baxter equation + HL polynomials

Asymptotics in the homogeneous stochastic six vertex model



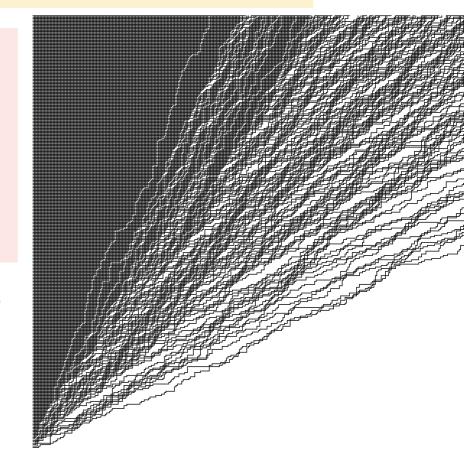
Height function has a limit shape
$$\frac{1}{L}h(Lx,Ly) o \mathcal{H}(x,y)$$

The nontrivial part of the limit shape is
$$\mathcal{H}(x,y) = \frac{\left(\sqrt{x(1-b_1)} - \sqrt{y(1-b_2)}\right)^2}{b_2 - b_1}$$

Fluctuations are governed by the GUE Tracy–Widom distribution (originated about 25 years ago in random matrix theory)

$$\lim_{L \to +\infty} \mathbb{P}\left(\frac{h(Lx, Ly) - L\mathcal{H}(x, y)}{\sigma_{x,y} L^{1/3}} \ge -s\right) = F_{GUE}(s)$$

- Higher spin versions + spin Hall-Littlewood polynomials
- Multilayer systems
- Degenerates to ASEP
- Limits to Kardar-Parisi-Zhang equation
- There is also a stochastic telegraph equation
- ...



Conclusion: It is worthwhile to connect particle systems to random partitions associated with symmetric functions...

[Bufetov-P. 2017, Mucciconi-Bufetov-P. in prepl Higher spin vertex models, dynamical vertex models, ... **Spin Hall-Littlewood (t,s)** Spin q-Whittaker (q,s) Macdonald (q,t) 1d systems are not present (yet?) q-Whittaker (q) Hall-Littlewood (t) q-TASEPs Jack (β) [O'Connell-Pei, ASEP, six vertex model Borodin-P., Matveev-P.1 [Bufetov-P. 2014] [Bufetov-Matveev, **Borodin-Bufetov-Wheeler**] **Schur** Random polymers, Whittaker TASEPs, longest geometric RSK [A.N. Kirillov, Noumi-Yamada, O'Connell, increasing subsequences Corwin-O'Connell-Seppalainen-Zygouras]

[Baik-Deift-Johansson, Johansson, ...]

Thank mu