3-dimensional topology and polycontinuous pattern

Koya Shimokawa

Saitama University

The Topology of Nucleic Acids:
Research at the Interface of Low-Dimensional Topology,
Polymer Physics and Molecular Biology
March 26, 2019

Banff International Research Station for Mathematical Innovation and Discovery

Block copolymer and microphase-separated structure, 3D network, and handlebody decomposition of 3-manifolds

K.Ishihara, Y.Koda, M.Ozawa, and K.Shimokawa,

Topology Appl 257 (2019) 11-21.

Metal-peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers

ring number (n):
crossing number (c):
name:

4
12
three-crossed tetrahedral link

T.Sawada, A.Saito, K.Tamiya, K.Shimokawa, Y.Hisada, and M.Fujita, Nature Communications 10, Article number: 921 (2019)

Block copolymer and microphase-separated structure

Block copolymer

ABA type triblock copolymer

$A B$ type diblock copolymer

ABC type triblock copolymer

Ex. hydrophilic, fluorophilic, oleophilic

Microphase-separated structure

Microphase-separated structure of ABA type triblock copolymer

Microphase-separated structure

Microphase-separated structure of block copolymer

V. Abetz, Macromolecular rapid communications (2015)

Microphase-separated structure

Microphase-separated structure of block copolymer

Here we will consider poly-continuous structure

Bicontinuous structure

Bicontinuous structure

Definition

Bicontinuous pattern is a 3-periodic surface that divides $\mathbb{R}^{\mathbf{3}}$ into two 3-periodic labyrinths (domains).

Spines of labyrinths form interwoven networks.

Tricontinuous structure

Definition

Tricontinuous pattern is a 3-periodic branched surface that divides $\mathbb{R}^{\mathbf{3}}$ into three 3-periodic labyrinth.

Entangled networks and bicontinuous pattern

ABA type triblock copolymer

$A B$ type diblock copolymer 900000000000000

SQUIRES et al., Phys. Rev. E 72, 011502 (2005)
Entangled networks and triply periodic bicontinuous pattern

Entangling of 3 networks and tricontinuous pattern

 ABC type triblock copolymer

Bicontinuous pattern and topology

One goal

- Topological classification of poly-continuous pattern
- Characterization of poly-continuous pattern using topological invariants

Tribranch surface

Here we use tribranched surface for tricontinuous pattern.

Red line is a branch locus.

Tricontinuous pattern

de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.

Tricontinuous pattern

de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.

Poly-continuous pattern and network

Entangling of 3 networks and tricontinuous pattern Poly-continuous pattern and network

Tricontinuous pattern

3dia (dia-c3*)

de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130

RCSR reference: http://rcsr.net/nets/dia-c3*

dia-c3

de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.
RCSR reference: http://rcsr.net/nets/dia-c3
two 3dia networks

Problem

How can we characterize tricontinuous pattern?

Tricontinuous pattern

de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130

RCSR reference: http://rcsr.net/nets/pcu-c3

Tricontinuous pattern

(three $\boldsymbol{K}_{\mathbf{4}}$ lattice)
de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130, RCSR reference: http://rcsr.net/nets/srs-c3

Tricontinuous pattern

RCSR reference: http://rcsr.net/nets/etc-c3

Entangled networks and bicontinuous pattern

Networks and bicontiuous patterns

Observation

- Network determines bicontinuous pattern uniquely
- Bicontiuous pattern determines network up to IX-XI moves

IX-XI move of networks

Entangled network and tricontinuous pattern

We consider entangled networks with 3 components and tricontinuous patterns

Thm(Ishihara-Koda-Ozawa-S, Topology Appl (2019))

There is one-to-one correspondence between entangled networks with 3 components and tricontinuous pattern up to IX-XI moves of networks and tribranched surfaces.

Entangled network and tricontinuous pattern

Thm(Ishihara-Koda-Ozawa-S, Topology Appl (2019))

There is one-to-one correspondence between entangled networks with 3 components and tricontinuous pattern up to IX-XI moves of networks and tribranched surfaces.

Corollary

We can study tricontinuous pattern using networks.

Entangled network and tricontinuous pattern

Thm(Ishihara-Koda-Ozawa-S, Topology Appl (2019))

There is one-to-one correspondence between entangled networks with 3 components and tricontinuous pattern up to IX-XI moves of networks and tribranched surfaces.

3-dimensional torus and poly-continuous pattern

Bicontinuous structure and Heegaard splittings

Triply periodic bicontinuous structure corresponds to a Heegaard splitting of the 3-dimensional torus $T^{3}=S^{1} \times S^{1} \times S^{1}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

2-dimensional torus

2-dimensional torus $T^{2}=S^{1} \times S^{1}=\mathbb{R}^{2} / \mathbb{Z}^{2}$

(wikipedia "Torus")

3-dimensional torus

3-dimensional torus $T^{3}=S^{1} \times S^{1} \times S^{1}=\mathbb{R}^{3} / \mathbb{Z}^{3}$

Heegaard splittings

Heegaard splitting of T^{3}

Theorem[Frohman-Hass, Invent. Math. 1989]

Genus 3 Heegaard splitting of $T^{\mathbf{3}}$ is unique up to homeomorphism.

Theorem[Boileau-Otal, JDG 1990]

Genus \boldsymbol{n} Heegaard splitting of $\boldsymbol{T}^{\mathbf{3}}$ is unique up to homeomorphism.

Frohman-Hass theorem is proved by using minimal surfaces.

These theorem will give information of bicontinuous structure.

SQUIRES et al., Phys. Rev. E 72, 011502 (2005)

Handlebody decomposition

Definition

\boldsymbol{M} : closed orientable 3-manifolds
$\boldsymbol{H}_{\boldsymbol{i}}$: handlebody
$\boldsymbol{M}=\boldsymbol{H}_{\mathbf{1}} \cup \boldsymbol{H}_{\mathbf{2}} \cup \boldsymbol{H}_{\mathbf{3}}$: handlebody decomposition
$\Leftrightarrow \boldsymbol{H}_{\boldsymbol{i}} \cap \boldsymbol{H}_{\boldsymbol{j}}=\boldsymbol{\partial} \boldsymbol{H}_{\boldsymbol{i}} \cap \boldsymbol{\partial} \boldsymbol{H}_{\boldsymbol{j}}$ is a compact surface (possibly disconnected)
$B=\partial H_{1} \cup \partial H_{2} \cup H_{3}$
is a tribranch surface.
If each $\boldsymbol{H}_{\boldsymbol{i}} \cap \boldsymbol{H}_{\boldsymbol{j}}$ is connected, this is called a trisection of a 3-manifold.

Example of type $(2,2,2)$ handlebody decomposition

Handlebody decomposition

Definition

\boldsymbol{M} : closed orientable 3-manifolds
$\boldsymbol{H}_{\boldsymbol{i}}$: handlebody
$\boldsymbol{M}=\boldsymbol{H}_{\mathbf{1}} \cup \boldsymbol{H}_{\mathbf{2}} \cup \boldsymbol{H}_{\mathbf{3}}$: handlebody decomposition
$\Leftrightarrow \boldsymbol{H}_{\boldsymbol{i}} \cap \boldsymbol{H}_{\boldsymbol{j}}=\boldsymbol{\partial} \boldsymbol{H}_{\boldsymbol{i}} \cap \boldsymbol{\partial} \boldsymbol{H}_{\boldsymbol{j}}$ is a compact surface (possibly disconnected)

Problem

Problem

Characterize handlebody decompositions of \boldsymbol{T}^{3}.

Theorem (Ishihara-Koda-Ozawa-Sakata-S)

Type $(\mathbf{1}, \mathbf{1}, \mathbf{1})$ handlebody decomposition of T^{3} that corresponds to the honeycomb pattern.

Problem

Problem

Characterize handlebody decompositions of T^{3}.

Characterization of type $(3,3,3)$ (or $(n, n, n))$ handlebody decomposition will give a characterization of tricontinuous patterns.

Stabilization theorem

Stably equivalence of Heegaard splitting

Reidemeister-Singer Theorem

Any two Heegaard splittings of a 3-manifold are stably equivalent.
That is, sequence of stabilizations yields equivalent Heegaard splittings.
We will generalize this.

Stabilization of handlebody decomposition

Stabilization yields another handlebody decomposition.

Stabilization of type la
Stabilization yields new complex tricontinuous structure from simple one.

Stabilization of handlebody decomposition

Stabilization yields another handlebody decomposition.

Stabilization yields new complex tricontinuous structure from simple one.

Stabilization of handlebody decomposition

Stabilization yields another handlebody decomposition.

Stabilization yields new complex tricontinuous structure from simple one.

Stably equivalence of handlebody decomposition

Stably equivalence theorem (Koenig, Ishihara-Ito-Koda-Ozawa-S 2018)

Two decompositions of a 3-manifold with 3 handlebodies are stably equivalent.
That is, a sequence of stabilizations and destabilization yields equivalent handlebody decompositions.

Cororally

We can relate one tricontinuous structure with another by a sequence of stabilization, destabilization and homeomophisms.

Stably equivalence of handlebody decomposition

Stably equivalence theorem (Koenig, Ishihara-Ito-Koda-Ozawa-S 2018)

Two decompositions of a 3-manifold with 3 handlebodies are stably equivalent.
That is, a sequence of stabilizations and destabilization yields equivalent handlebody decompositions.

H_{1}

H_{2}

H_{3}
$\left(g_{1}, g_{2}, g_{3} ; b\right)$

$(0, g, g ; 1)$

Non-stabilized decomposition

Theorem [Boileau-Otal 1990]

Any Heegaard splitting of \boldsymbol{T}^{3} with genus at least 4 is stabilized.
Theorem [Mishina 2019]

- No type $(\mathbf{0}, \mathbf{0}, \mathbf{3})$ decomposition of $\boldsymbol{T}^{\mathbf{3}}$ is stabilized.
- No type $(\mathbf{0}, \mathbf{2}, \mathbf{2})$ decomposition of $\boldsymbol{T}^{\mathbf{3}}$ is stabilized.
- No type $(\mathbf{1}, \mathbf{1}, \mathbf{1})$ decomposition of $\boldsymbol{T}^{\mathbf{3}}$ is stabilized.
§2 Metal-peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers

Self－assembly

Self－assembly of molecular polyhedra

自己組縗化分子システムの創出

Fujita lab homepage（http：／／fujitalab．t．u－tokyo．ac．jp）

12-crossing peptide [4]catenanes

Metal-peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers

T.Sawada, A.Saito, K.Tamiya, K.Shimokawa, Y.Hisada, and M.Fujita,

Nature Communications 10, Article number: 921 (2019)

Selective construction of two topologies of 12-crossing peptide [4]catenanes from metal ions and pyridineappended tripeptide ligands.

ARTICLE
Metal-peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers

Tomohisa Sawada@ ', Ami Saito@ ', Kenki Tamiya@ ${ }^{1}$, Koya Shimokawa φ^{2}, Yutaro Hisada $\emptyset^{1} \&$ Makoto Fujita?

With increasing ring-crossing number (c), knot theory predicts an exponential increase in the unber of topologicalyly different links of these interfocking structures, even for structure opologies of 12 -crossing peptide $[4]$ cateranes $(n=4, c=12$) from metal ions and pyididinesppended trieptide ligands. Two of the 100 possible topologies for this structure are selestively creased trom related ligands in which only the tripepide sequence is changed. one atenane has a T_{2}-tetrahedran hink and the other a three-coossed tetrahedral hink. Crystal residues in the ligand casses the change in the structure of the final tetrahedral link. Our results thus reveal that peptide-based folding and assembly can be used for the focile bottom-up construction of 30 moleeculur objects containing palytedral links.

12-crossing peptide [4]catenanes

12-crossing peptide [4]catenanes

a

$\left[\mathrm{Ag}_{12}(\mathbf{1})_{12}\right]^{12+}$
($[4]_{12}$-catenane 2)
b

$\left[\mathrm{Ag}_{12}(3)_{12}\right]^{12+}$
([4] $]_{12}$-catenane 4)

P: L-proline
G: glycine
T: L-threonine
c

12-crossing peptide [4]catenanes

a

$\left[\mathrm{Ag}_{12}(\mathbf{1})_{12}\right]^{12+}$
($[4]_{12}$-catenane 2)

P: L-proline, G: glycine
12-crossing peptide [4]catenanes from metal ions and pyridineappended tripeptide ligands

12-crossing peptide [4]catenanes

b

P: L-proline, T: L-threonine
12-crossing peptide [4]catenanes from metal ions and pyridineappended tripeptide ligands

12-crossing peptide [4]catenanes

c

12-crossing peptide [4]catenanes

a

\Rightarrow

T_{2}-tetrahedral link

tetrahedron

12-crossing peptide [4]catenanes

12-crossing peptide [4]catenanes

	$\xrightarrow[\text { folding \& assembly }]{\mathrm{Ag}^{+}}$	a single topology of the $[4]_{12}$-catenane
peptide sequence	-R	$[4]_{12}$-catenane type
$3-T-P-P-$	${\underset{\sim}{N}}^{\mathrm{OH}}$	three-crossed tetrahedral link
$5 \quad-A-P-P-$	$\underset{\sim}{\mathrm{CH}_{3}}$	three-crossed tetrahedral link
$6 \quad-I-P-P-$	$\underbrace{1 . n}_{\sim}$	T2-tetrahedral link
$7 \quad-V-P-P-$	Y_{\sim}	T2-tetrahedral link

Conlcusion

- Microphase-separated structure of block copolymer can be studied using 3-dimensional topology
- Relation between poly-continuous structure and entangled networks is given
- Characterization of handlebody decomposition of 3-dimensional torus gives characterization of poly-continuous structure
- Modification of poly-continuous structure into another is provided
- Self-assembly construction of 12-crossing peptide [4]catenanes from metal ions and pyridineappended tripeptide ligands

Acknowledgment

Collaborators
－Makoto Ozawa（Komazawa U）
－Yuya Koda（Hiroshima U）
－Kai Ishihara（Yamaguchi U）
－Yasuyoshi Ito（Saitama U）
－Naoki Sakata（Saitama U）
－Ryosuke Mishina（Saitama U）
－Makoto Fujita（U Tokyo）
－Tomohisa Sawada（U Tokyo）
－Ami Saito（U Tokyo）
－Yutaro Hisada（U Tokyo）

Fundings

－JSPS Grants－in－Aid for Scientific Research on Innovative Areas 17 H 06460 and 17H06463
－JST CREST Grant Number JPMJCR17J4
－JSPS Grants－in－Aid for Scientific Research（B）16H03928
－JSPS Grant－in－Aid for Challenging Exploratory Research 16K13751

