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Block copolymer and microphase-separated
structure, 3D network, and handlebody

decomposition of 3-manifolds

K.Ishihara, Y.Koda, M.Ozawa, and K.Shimokawa,

Topology Appl 257 (2019) 11-21.

Metal-peptide rings form highly entangled
topologically inequivalent frameworks with

the same ring- and crossing-numbers

4ring number (n):

crossing number (c): 12

4

12

diagram:

name: T2-tetrahedral link three-crossed tetrahedral link

T.Sawada, A.Saito, K.Tamiya, K.Shimokawa, Y.Hisada, and M.Fujita,

Nature Communications 10, Article number: 921 (2019)
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Block copolymer and microphase-separated structure
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Block copolymer

ABA type triblock copolymer AB type diblock copolymer

ABC type triblock copolymer

Ex. hydrophilic, fluorophilic, oleophilic

Koya Shimokawa (Saitama University) 3-dimensional topology and polycontinuous pattern Mar 26, 2019 4 / 50



Microphase-separated structure

Microphase-separated structure of ABA type triblock copolymer
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Microphase-separated structure

Microphase-separated structure of block copolymer

V. Abetz, Macromolecular rapid communications (2015)
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Microphase-separated structure

Microphase-separated structure of block copolymer

V. Abetz, Macromolecular rapid communications (2015)

Here we will consider poly-continuous structure
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Bicontinuous structure
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Bicontinuous structure

Definition

Bicontinuous pattern is a 3-periodic surface that divides R3 into two 3-periodic labyrinths
(domains).

Spines of labyrinths form interwoven networks.

SQUIRES et al., Phys. Rev. E 72, 011502 (2005)
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Tricontinuous structure

Definition

Tricontinuous pattern is a 3-periodic branched surface that divides R3 into three 3-periodic
labyrinth.
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Entangled networks and bicontinuous pattern

ABA type triblock copolymer AB type diblock copolymer

SQUIRES et al., Phys. Rev. E 72, 011502 (2005)

Entangled networks and triply periodic bicontinuous pattern
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Entangling of 3 networks and tricontinuous pattern

ABC type triblock copolymer

Tricontinuous pattern is given by triply periodic tribranched surface
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Bicontinuous pattern and topology

One goal

Topological classification of poly-continuous pattern

Characterization of poly-continuous pattern using topological invariants
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Tribranch surface

Here we use tribranched surface for tricontinuous pattern.

Red line is a branch locus.
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Tricontinuous pattern

de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.
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Tricontinuous pattern
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de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.
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Poly-continuous pattern and network
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Entangling of 3 networks and tricontinuous pattern
Poly-continuous pattern and network
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Tricontinuous pattern

��������������
de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.

RCSR reference: http://rcsr.net/nets/dia-c3*
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dia-c3

�������������
de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130.

RCSR reference: http://rcsr.net/nets/dia-c3
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two 3dia networks

������������� ������������ �

Problem

How can we characterize tricontinuous pattern?
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Tricontinuous pattern

����
de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130

RCSR reference: http://rcsr.net/nets/pcu-c3
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Tricontinuous pattern

����

(three K4 lattice)
de Campo L, Castle T, Hyde ST. (2017) Interface Focus 7: 20160130, RCSR reference: http://rcsr.net/nets/srs-c3
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Tricontinuous pattern

����

RCSR reference: http://rcsr.net/nets/etc-c3
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Entangled networks and bicontinuous pattern

Networks and bicontiuous patterns

Observation

Network determines bicontinuous pattern uniquely

Bicontiuous pattern determines network up to IX-XI moves

IX-XI move of networks
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Entangled network and tricontinuous pattern

We consider entangled networks with 3 components and tricontinuous patterns

Thm(Ishihara-Koda-Ozawa-S, Topology Appl (2019))

There is one-to-one correspondence between entangled networks with 3 components and
tricontinuous pattern up to IX-XI moves of networks and tribranched surfaces.
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Entangled network and tricontinuous pattern

Thm(Ishihara-Koda-Ozawa-S, Topology Appl (2019))

There is one-to-one correspondence between entangled networks with 3 components and
tricontinuous pattern up to IX-XI moves of networks and tribranched surfaces.

Corollary

We can study tricontinuous pattern using networks.
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Entangled network and tricontinuous pattern

Thm(Ishihara-Koda-Ozawa-S, Topology Appl (2019))

There is one-to-one correspondence between entangled networks with 3 components and
tricontinuous pattern up to IX-XI moves of networks and tribranched surfaces.
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3-dimensional torus and poly-continuous pattern
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Bicontinuous structure and Heegaard splittings
Triply periodic bicontinuous structure corresponds to a Heegaard splitting of the 3-dimensional
torus T 3 = S1 × S1 × S1 = R3/Z3.

T
3

∪

＝

SQUIRES et al., Phys. Rev. E 72, 011502 (2005)
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2-dimensional torus

2-dimensional torus T 2 = S1 × S1 = R2/Z2

(wikipedia ”Torus”)
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3-dimensional torus

3-dimensional torus T 3 = S1 × S1 × S1 = R3/Z3
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Heegaard splittings

Definition

M : closed orientable 3-manifolds
Hi : handlebody
M = H1 ∪ H2 : Heegaard splitting
⇔ H1 ∩ H2 = ∂H1 ∩ ∂H2 = S

Genus 3 Heegaard splitting of T 3

T
3

∪

＝
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Heegaard splitting of T 3

Theorem[Frohman-Hass, Invent. Math. 1989]

Genus 3 Heegaard splitting of T 3 is unique up to homeomorphism.

Theorem[Boileau-Otal, JDG 1990]

Genus n Heegaard splitting of T 3 is unique up to homeomorphism.

Frohman-Hass theorem is proved by using min-
imal surfaces.

These theorem will give information of bicontin-
uous structure.

SQUIRES et al., Phys. Rev. E 72, 011502 (2005)
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Handlebody decomposition

Definition

M : closed orientable 3-manifolds
Hi : handlebody
M = H1 ∪ H2 ∪ H3 : handlebody decomposition
⇔ Hi ∩ Hj = ∂Hi ∩ ∂Hj is a compact surface (possibly disconnected)

B = ∂H1 ∪ ∂H2 ∪ H3

is a tribranch surface.
If each Hi ∩ Hj is connected,
this is called a trisection of
a 3-manifold.

Example of type (2, 2, 2) handlebody decom-
position

T
3 ＝

∪

∪
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Handlebody decomposition

Definition

M : closed orientable 3-manifolds
Hi : handlebody
M = H1 ∪ H2 ∪ H3 : handlebody decomposition
⇔ Hi ∩ Hj = ∂Hi ∩ ∂Hj is a compact surface (possibly disconnected)

H1 H2 H3
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Problem

Problem

Characterize handlebody decompositions of T 3.

Theorem (Ishihara-Koda-Ozawa-Sakata-S)

Type (1, 1, 1) handlebody decomposition of T 3 that corresponds to the honeycomb pattern.

T
3 ＝

∪

∪
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Problem

Problem

Characterize handlebody decompositions of T 3.

Characterization of type (3, 3, 3) (or
(n, n, n)) handlebody decomposition
will give a characterization of tricon-
tinuous patterns.
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Stabilization theorem
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Stably equivalence of Heegaard splitting

Reidemeister-Singer Theorem

Any two Heegaard splittings of a 3-manifold are stably equivalent.
That is, sequence of stabilizations yields equivalent Heegaard splittings.

We will generalize this.

Stabilization of a Heegaard splitting
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Stabilization of handlebody decomposition
Stabilization yields another handlebody decomposition.

Hj Hk

Hi

Hi

→← Hj Hk

Hi

Hi
Stabilization of type Ia

Stabilization yields new complex tricontinuous structure from simple one.
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Stabilization of handlebody decomposition

Stabilization yields another handlebody decomposition.

HjHk

Hi

HjHk

→←
HjHk

Hi

HjHk
Stabilization of type Ib

Stabilization yields new complex tricontinuous structure from simple one.
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Stabilization of handlebody decomposition

Stabilization yields another handlebody decomposition.

HjHk

Hi

HjHk

→←
HjHk

Hi

HjHk
Stabilization of type II

Stabilization yields new complex tricontinuous structure from simple one.
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Stably equivalence of handlebody decomposition

Stably equivalence theorem (Koenig, Ishihara-Ito-Koda-Ozawa-S 2018)

Two decompositions of a 3-manifold with 3 handlebodies are stably equivalent.
That is, a sequence of stabilizations and destabilization yields equivalent handlebody
decompositions.

Cororally

We can relate one tricontinuous structure with another by a sequence of stabilization,
destabilization and homeomophisms.

Hj Hk

Hi

Hi

→← Hj Hk

Hi

Hi

→←
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Stably equivalence of handlebody decomposition

Stably equivalence theorem (Koenig, Ishihara-Ito-Koda-Ozawa-S 2018)

Two decompositions of a 3-manifold with 3 handlebodies are stably equivalent.
That is, a sequence of stabilizations and destabilization yields equivalent handlebody
decompositions.

H1 H2 H3 (g1, g2, g3; b)

F13

F23F23F12

F13
F12

(0, g, g; 1)
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Non-stabilized decomposition

Theorem [Boileau-Otal 1990]

Any Heegaard splitting of T 3 with genus at least 4 is stabilized.

Theorem [Mishina 2019]

No type (0, 0, 3) decomposition of T 3 is stabilized.

No type (0, 2, 2) decomposition of T 3 is stabilized.

No type (1, 1, 1) decomposition of T 3 is stabilized.
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§2 Metal-peptide rings form highly entangled topologically inequivalent
frameworks with the same ring- and crossing-numbers
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Self-assembly

Self-assembly of molecular polyhedra

Fujita lab homepage (http://fujitalab.t.u-tokyo.ac.jp)
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12-crossing peptide [4]catenanes

Metal-peptide rings form highly entangled
topologically inequivalent frameworks

with the same ring- and crossing-numbers

T.Sawada, A.Saito, K.Tamiya, K.Shimokawa,
Y.Hisada, and M.Fujita,

Nature Communications 10,
Article number: 921 (2019)

Selective construction of two topologies of
12-crossing peptide [4]catenanes from metal
ions and pyridineappended tripeptide ligands.

ARTICLE

Metal–peptide rings form highly entangled
topologically inequivalent frameworks with the
same ring- and crossing-numbers
Tomohisa Sawada 1, Ami Saito 1, Kenki Tamiya 1, Koya Shimokawa 2, Yutaro Hisada 1 & Makoto Fujita1

With increasing ring-crossing number (c), knot theory predicts an exponential increase in the

number of topologically different links of these interlocking structures, even for structures

with the same ring number (n) and c. Here, we report the selective construction of two

topologies of 12-crossing peptide [4]catenanes (n= 4, c= 12) from metal ions and pyridine-

appended tripeptide ligands. Two of the 100 possible topologies for this structure are

selectively created from related ligands in which only the tripeptide sequence is changed: one

catenane has a T2-tetrahedral link and the other a three-crossed tetrahedral link. Crystal-

lographic studies illustrate that a conformational difference in only one of the three peptide

residues in the ligand causes the change in the structure of the final tetrahedral link. Our

results thus reveal that peptide-based folding and assembly can be used for the facile

bottom-up construction of 3D molecular objects containing polyhedral links.

https://doi.org/10.1038/s41467-019-08879-7 OPEN

1Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. 2Department of

Mathematics, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan. Correspondence and requests for materials should be addressed

to T.S. (email: tsawada@appchem.t.u-tokyo.ac.jp) or to M.F. (email: mfujita@appchem.t.u-tokyo.ac.jp)

NATURE COMMUNICATIONS |          (2019) 10:921 | https://doi.org/10.1038/s41467-019-08879-7 | www.nature.com/naturecommunications 1
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12-crossing peptide [4]catenanes

4ring number (n):

crossing number (c): 12

4

12

diagram:

name: T2-tetrahedral link three-crossed tetrahedral link
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12-crossing peptide [4]catenanes

Ag+

( [4]12-catenane 4 )

=

folding & assembly

[Ag12(3)12]12+

O

N

O

N

H
N

N
H

O

N N

O

1

– P – G – P –

N N
H

N

O

O O

N
H
N

O

N

– T – P – P –

OH

3

a

b

c PII-helix

Ag+

( [4]12-catenane 2 )

=

folding & assembly

[Ag12(1)12]12+

=

=

P: L-proline
G: glycine
T: L-threonine
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12-crossing peptide [4]catenanes

P: L-proline, G: glycine

12-crossing peptide [4]catenanes from metal ions and pyridineappended tripeptide ligands
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12-crossing peptide [4]catenanes

P: L-proline, T: L-threonine

12-crossing peptide [4]catenanes from metal ions and pyridineappended tripeptide ligands

Koya Shimokawa (Saitama University) 3-dimensional topology and polycontinuous pattern Mar 26, 2019 44 / 50



12-crossing peptide [4]catenanes
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12-crossing peptide [4]catenanes

a cuboctahedral link

A

C

edge:

vertex:

edge:

vertex:

three-crossed 
tetrahedral link

B

edge:

vertex:

T2-tetrahedral link

cuboctahedron

tetrahedron

tetrahedron

a

b

c
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12-crossing peptide [4]catenanes

a

b
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12-crossing peptide [4]catenanes

CH3

N N
H

N

O

O O

N
H
N

O

N

R

– X – P – P –

5

6

Ag+

folding & assembly

a single topology of 
the [4]12-catenane

peptide sequence -R [4]12-catenane type

– A – P – P –

– I – P – P – T2-tetrahedral link

three-crossed 
tetrahedral link

T2-tetrahedral link7 – V – P – P –

three-crossed 
tetrahedral link

OH
3 – T – P – P –
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Conlcusion

Microphase-separated structure of block copolymer can be studied using 3-dimensional
topology

Relation between poly-continuous structure and entangled networks is given

Characterization of handlebody decomposition of 3-dimensional torus gives
characterization of poly-continuous structure

Modification of poly-continuous structure into another is provided

Self-assembly construction of 12-crossing peptide [4]catenanes from metal ions and
pyridineappended tripeptide ligands
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