Pricing in a Stochastic Environment

Glen Swindle

Scoville Risk Partners

September 23, 2019

◆□→ ◆圖→ ◆注→ ◆注→ □注

1/21

Commodities Markets

The Purpose of (Electricity) Markets

- Commodities Markets
 - Spot price formation which clears supply and demand.
 - Efficient deployment of capital.
- Electricity Markets
 - More than just real-time balance of supply and demand.
 - Reliability
 - Ancillaries (short time-scale)
 - Capacity (long time-scale)
 - Investment
 - Cost: Build assets that are likely to lower cost.
 - Locational: Try to build assets where they are needed.

 Transparency and stability of market mechanics yields more efficient investment. ・ロン ・四 と ・ ヨ と ・ ヨ と

- 3

Forward Energy Markets

- Buy/sell electricity for a future delivery month.
 - Delivered uniformly over a bucket (e.g. peak hours). -
- The following figure shows PJM Western Hub forwards.
 - Each value is the monthly price (\$/MWh) for uniform on-peak delivery.
 - Derived from exchange settles (ICE,CME) and Bloomberg. -

Forward Energy Markets

- Forward prices "exist" for most delivery zones.
- Liquidity can vary substantially.
 - Benchmarks are liquidity centers—in this case PJMWH.
- Forward markets depend on stability and integrity of ISO/RTO price formation.

Forward Energy Markets

- The forward price is the market value for the distribution of future spot prices.
 - This figure shows a simulated (to be discussed) distribution of PSEG monthly average peak spot prices for Jul2020.
- The driver for trading activity is the management of end-user risks.
 - Companies wanting to protect futures cashflows by hedging.
 - Lenders requiring asset developers to hedge cashflows.
- Forwards are the risk transfer work horses.
 - Many types of derivatives trade, but all are "anchored" to forwards.

High-Dimensional Market

- Why do all of these forwards trade? Under the LMP paradigm:
 - People want hedges as "close" to their assets as possible.
 - Generation assets (and some loads) settle on nodal spot prices.
 - Most load settles at zonal prices.
- Project Finance Example
 - Asset build funded by debt; lenders insist on a hedge that protects the asset cashflows.
 - The hedge is often a derivative.
 - Heat rate call options designed to mimic the "call option nature" of generation assets.
 - Revenue puts compound options designed to protect a drop in asset value.
 - Asset cashflows driven by nodal prices; **but** dealers almost always insist on zonal (or hub) prices for the hedge.

High-Dimensional Market

- Project Finance Example (cont)
 - Modeling is required to ensure that:
 - The interest payments are covered by the annuity from the hedge.
 - The asset cashflows cover the payoff of the hedge.

イロト 不得下 イヨト イヨト 二日

Stochastic Modeling

Valuing and Hedging Assets

- Things get complicated quickly.
 - No known asset produces a constant volume with certainty.
 - Conventional generation assets are complicated things.
 - Nodal prices can behave erratically.
 - Short load positions are inevitably stochastic in nature.
- Models fill gaps.
 - The results below are simulated payoffs for a CCGT and a load deal.
 - The analytics required to produce such results are nontrivial.

Stochastic Modeling

Typical Organization of Simulation Framework

9/21

Stochastic Modeling

Some Practical Considerations

- All of the analysis above presumes stability of physical system.
 - Rational investment requires a reasonable level of predictive power.
 - Discontinuities in price formation algorithms or topology are challenging.
 - Nodal price risk is a chronic impediment to investment decisions.

Capacity Markets

- <u>Consumers</u> (the load) pays for reliability services as well as energy.
- Reliability products can be a nontrivial part of revenues/costs.
 - Capacity.
 - Ancillary services.
- Capacity (in many electricity markets) can rival energy in magnitude of cost.
 - Consumers are obligated to purchase a "piece" of a generator during a given delivery period.
 - Generators receive these revenues, thereby encouraging "extra" capacity.
 - It is the moral equivalent of storage that supports reliability in other energy markets (e.g. natural gas).
 - Prices are set via ISO-defined requirements and periodic auctions.

Capacity Markets

- Key Points:
 - The amount of capacity that a generator can sell depends upon the size of the unit *and* a broad measure of how reliable it is.
 - ISOs have recently modified capacity products to claw back revenues for failure to produce during low-reserve margin periods.
 - This is the only sense in which generation "pays" for contributing to reliability problems.
- As energy prices have fallen (shale gas) the relative contribution of capacity costs in a consumers bill has increased.
- Capacity is a blunt instrument in the quest for sufficient and reliable generation.

Reliability

Sources of Randomness

- Renewables production is a new and pronounced source of randomness.
- The nature of the hourly dynamics differs from load.
 - Load is primarily temperature driven.
 - This figure shows actor analysis of forecasting errors at KABI (Abilene).
 - 24 hour (-1d) hourly forecasting errors (2015 to mid-2019).
 - Slower decay in wind spectrum-the forecasting error is "rougher."

Reliability

Sources of Randomness

- A Stylized Dichotomy
 - Load has been the primary source of "Gaussian" randomness.
 - Generators are the primary sources of "Poisson" randomness—outages.
- Electricity markets in the U.S. are sustaining a dramatic increase in renewables generation.
 - Load pays for reliability while generation contributes increasingly to "Gaussian" randomness.
 - Capacity markets do little to reward flexibility and encourage predictable production on short time-scales.
- Can current market design support new methods production?

As Things Stand Now

- Deterministic algorithms (SCED) minimize cost:
 - Inputs:
 - Forecasted loads.
 - Generation offers (including constraints).
 - Anticipated system configuration and contingencies.
 - Results:
 - Locational marginal prices (shadow prices for incremental demand).
 - Ancillary prices arising from rules-based requirements.
- Cost of Randomness:
 - Handled (in arrears) via unit flexibility, ancillaries and uplift.
 - Load (the short) pays for most of it.
- Incentives:
 - Load is penalized for forecasting errors.
 - Generators are rewarded for reliability by capacity payments and energy/ancillary margin.

Non-LMP "Stylized" Setting

- Setup (24 hour window)
 - Dispatchable Generation
 - Allowed generation levels $\vec{g}_j \in \mathcal{A}_j$ for $j = 1, \dots J$.
 - Cost $c_i(g_i)$; depends on generation levels, fuels and constraints.
 - Load Net of Intermittent Supply

$$-\vec{L}_* = \sum_{k=1}^{K} \vec{L}_k.$$

- Each \vec{L}_k is a stochastic 24-dimensional process.
- Deterministic Optimization (The "current" way)
 - Minimize the cost to serve the expected net load $\vec{\mu}_{L_*}$:

$$C\left(\vec{\mu}_{L_*}\right) = \min_{g_{\cdot} \in \mathcal{A}_*} \sum_{j} c_j\left(\vec{g}_{j}\right) \quad \text{where} \quad \mathcal{A}_* = \begin{cases} g_{\cdot} \in \mathcal{A}. \\ \vec{\mathbf{1}}^t g_{\cdot} = \vec{\mu}_{L_*} \end{cases}$$

<ロ > < 部 > < 書 > < 書 > 言 の < で 16/21

Non-LMP "Stylized" Setting (cont)

Comments

- Spot prices are the marginal incremental cost: $\vec{p} = \nabla_{\vec{\mu}_{L_*}} C(\vec{\mu}_{L_*})$.
- Ancillaries—which generators to you want to have on "stand by" and what do you pay them?
 - Often prescribed in a scenario-based fashion.
 - Decision "co-optimized" with energy price formation.

• No obvious way to allocate reliability costs to contributors of randomness.

Non-LMP "Stylized" Setting — A Daily Capacity Market

- With randomness you must decide <u>before</u> L
 ^{*} is realized how you are going to handle matters.
 - A single set of clearing prices cannot simultaneously balance loads while rewarding the "good" participants and penalizing the "bad".
 - Introduce generation offers π_i to participate in the DA market.
 - ISO/RTO chooses which to accept—accept flag $F_j \in \{0,1\}$.
 - The new optimization problem is:

$$\min_{\vec{F}} \left(E\left[\min_{g. \in \mathcal{A}_*} \sum_j c_j\left(\vec{g}_j\right) \right] + \vec{\pi}^t \vec{F} \right) \quad \text{where} \quad \mathcal{A}_* = \begin{cases} g. \in \mathcal{A}.\\ \vec{1}^t g. = \vec{\mu}_{L_*} \\ \vec{g}_j \equiv 0 \quad \text{if} \quad F_j = 0 \end{cases}$$

A Daily Capacity Market (cont)

- Implicit joint optimization of energy production and reserves.
 - Generators are selected based upon their offers $ec{\pi}$ and their flexibility.
 - Spot prices remain a marginal cost incremental load \vec{L}_* : $\vec{p} = \nabla_{\vec{L}_*} C(\vec{L}_*)$.
- Allocation of reliability costs achievable in a rigorous fashion.
 - Compute the marginal cost of each factor (PCA) of the (random) net load \vec{L}_* by perturbation.
 - The "daily capacity" cost is allocated to each L_k based upon contribution to each factor.

Non-LMP "Stylized" Setting

• On the Positive Side

- A key input to such an approach is credible modeling of the joint behavior of a large number of contributing loads and supply \vec{L}_k .
- This is already within reach of existing technology.
- The calculation of the marginal capacity cost to changes in the covariance of \vec{L}_* is analogous to marginal VaR calculations in other areas of finance.
- Neutral
 - The calculation of marginal capacity costs would require dealing with the "lumpiness" of the $\vec{\pi}^t \vec{F}$ term.
 - This is also an issue that is being dealt with in existing dispatch calculations.
 - It is likely that constraints on bid behavior would be required
 - Who can submit positive offers and how high such can be.
 - Similar issues already arise in existing capacity markets.

Non-LMP "Stylized" Setting

Challenges

- Balancing accurate modeling of the joint loads \vec{L}_k with transparency to those on the receiving end of the daily capacity cost is not trivial.
- The calculations required for stochastic optimization are daunting—even in say a lower-dimensional zonal setting.
- A Likely Tradeoff
 - Keep LMP as is and deploy a calculation like the above to reward flexibility on longer length scales.
 - Roll LMP back to zonal pricing.
- Conclusion
 - Nodal pricing is of dubious value in capital allocation; zonal pricing may be better and should allow the above to be computationally feasible.
 - Hedges would then involve derivatives on $\vec{\pi}$.