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Introduction: Abstract

The talk overviews my recent results in energy market modelling,
including:
- option pricing formula for a mean-reversion asset,
- variance and volatility swaps in energy markets,
-applications of weather derivatives in energy markets,
- pricing crude oil options using Levy processes,
-energy contracts modelling with delayed and jumped volatilities,
and some latest results on
-energy-switching and carbon pricing.
I will also talk about
-the clean renewable energy prospective and a vision to transition
to 100% wind, water & solar energy in Canada, and, in particular,
in Vancouver and Calgary.

.
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Overview

•Explicit Option Pricing Formula for a Mean-Reverting
Asset in Energy Market
(Sw., A.: J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Some commodity prices, like oil and gas, exhibit the mean re-
version, unlike stock price. It means that they tend over time
to return to some long-term mean. Black’s model (1976) and
Schwartz’s model (1997) have become a standard approach to
the problem of pricing options on commodities.



Mean-Reversion

We presented explicit option pricing formula for a mean-reverting
asset in energy market.



Overview

•Explicit Option Pricing Formula for a Mean-Reverting
Asset in Energy Market
(Sw., A.: J. Numer. Appl. Math., V.1(96), 2008, 216-233)

In this paper we considered a risky asset St following the mean-
reverting stochastic process given by the following stochastic
differential equation

dSt = a(L− St)dt+ σStdWt,

where W is a standard Wiener process, σ > 0 is the volatility,
the constant L is called the ’long-term mean’ of the process, to
which it reverts over time, and a > 0 measures the ’strength’ of
mean reversion.



Overview

•Explicit Option Pricing Formula for a Mean-Reverting
Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

This mean-reverting model is a one-factor version of the two-
factor model made popular in the context of energy modelling
by Pilipovic (1997). We call it continuous-time GARCH or
inhomogeneous geometric Brownian motion model.

Using a change of time method we find an explicit solution of this
equation and using this solution we are able to find the option
pricing formula under risk-neutral measure.



Overview

• Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

C∗T = e−(r+a∗)TS(0)N(y+)− e−rTKN(y−)

+ L∗e−(r+a∗)T [(ea
∗T − 1)−

∫ y0
0 zF ∗T (dz)],

where

y+ := σ
√
T − y0 and y− := −y0,

a∗ := a+ λσ, L∗ :=
aL

a+ λσ
,
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•Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

y0 is the solution of the following equation

y0 =
ln( K

S(0)) + (σ
2

2 + a∗)T

σ
√
T

−
ln(1 + a∗L∗

S(0)

∫ T
0 ea

∗se−σy0
√
s+σ2s

2 ds)

σ
√
T

,

and F ∗T (dz) is the probability distribution FT (dz) as above, but
instead of a we have to take a∗ = a+ λσ, λ is a market price of
risk.

Remark: When L∗ = 0 and a∗ = −r, then the explicit option
pricing formula is the well-known Black-Scholes formula!



Overview

• Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Numerical Example: AECO Natural GAS Index (1 May 1998-30
April 1999). We shall calculate the value of a European call
option on the price of a daily natural gas contract. To apply
our formula for calculating this value we need to calibrate the
parameters a, L, σ and λ. These parameters may be obtained
from futures prices for the AECO Natural Gas Index for the
period 1 May 1998 to 30 April 1999 (see Bos, Ware and Pavlov
(2002), p.340). The parameters pertaining to the option are the
following:



Overview

• Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market

(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Price and Option Process Parameters
T a σ L λ r K
6
months

4.6488 1.5116 2.7264 0.1885 0.05 3

From this table we can calculate the values for a∗ and L∗ :

a∗ = a+ λσ = 4.9337,

and

L∗ =
aL

a+ λσ
= 2.5690.



For the value of S0 we can take S0 ∈ [1,6].

Fig. 1. Dependence of ESt on

T (AECO Natural Gas Index

(1 May 1998-30 April 1999))

Fig. 2. Dependence of ESt on

S0 and T (AECO Natural Gas

Index (1 May 1998-30 April

1999))



Overview

•Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

We calculated variance and volatility swaps in energy market.

Fig. 1.Hedge Fund+Dealer



Fig. 2. Scenarios: A-volatility increases and B-volatility decreases
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• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Variance swaps are quite common in commodity, e.g., in energy
market, and they are commonly traded. We consider Ornstein-
Uhlenbeck process for commodity asset with stochastic volatil-
ity following continuous-time GARCH model or Pilipovic (1998)
one-factor model. The classical stochastic process for the spot
dynamics of commodity prices is given by the Schwartz’ model
(1997). It is defined as the exponential of an Ornstein-Uhlenbeck
(OU) process, and has become the standard model for energy
prices possessing mean-reverting features.



Overview

• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Our focus on energy commodities derives from two reasons:

1) energy is the most important commodity sector, and crude
oil and natural gas constitute the largest components of the two
most widely tracked commodity indices: the Standard & Poors
Goldman Sachs Commodity Index ( S & P GSCI) and the Dow
Jones-AIG Commodity Index ( DJ-AIGCI);
2) existence of a liquid options market: crude oil and natural
gas indeed have the deepest and most liquid options marketss
among all commodities.
The idea is to use variance (or volatility) swaps on futures con-
tracts.



Overview

• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Variance risk premia in energy commodities, crude oil and natural
gas, has been considered by A. Trolle and E. Schwartz (2009).

The same methodology as in Trolle & Schwartz (2009) was used
by Carr & Wu (2009) in their study of equity variance risk premia.



Overview

• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

The S & P GSCI is comprised of 24 commoditieswith the weight
of each commodity determined by their relative levels of world
production over the past five years. The DJ-AIGCI is comprised
of 19 commodities with the weight of each component deter-
mined by liquidity and world production values, with liquidity
being the dominant factor. Crude oil and natural gas are the
largest components in both indices. In 2007, their weight were
51.30% and 6.71%, respectively, in the S & P GSCI and 13.88%
and 11.03%, respectively, in the DJ-AIGCI.



Overview

• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

The Chicago Board Options Exchange (CBOE) recently intro-
duced a Crude Oil Volatility Index (ticker symbol OVX). This
index also measures the conditional risk-neutral expectation of
crude oil variance, but is computed from a cross-section of listed
options on the United States Oil Fund (USO), which tracks the
price of WTI as closely as possible.



Overview

• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

The CBOE Crude Oil ETF Volatility Index (Oil VIX, Ticker
- OVX) measures the market’s expectation of 30-day volatility
of crude oil prices by applying the VIX methodology to United
States Oil Fund, LP (Ticker - USO) options spanning a wide
range of strike prices (see Figures below. Courtesy-CBOE:
http://www.cboe.com/micro/oilvix/introduction.aspx).
We have to notice that crude oil and natural gas trade in units
of 1,000 barrels and 10,000 British thermal units (mmBtu), re-
spectively. Usually, prices are quoted as US dollars and cents per
barrel or mmBtu.
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• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

In this paper, we considered a risky asset in energy market with
stochastic variance following a mean-reverting stochastic pro-
cess satisfying the following SDE ( continuous-time GARCH(1,1)
model):

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt,

where a is a speed of mean reversion, L is the mean reverting
level (or equilibrium level), γ is the volatility of volatility σ(t), Wt

is a standard Wiener process.



Overview

• Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Using a change of time method we found an explicit solution of
this equation, and using this solution we are able to find the vari-
ance and volatility swaps pricing formula under the physical mea-
sure. Then, using the same argument, we find the option pricing
formula under risk-neutral measure. We applied Brockhaus-Long
(2000) approximation to find the value of volatility swap. A nu-
merical example for the AECO Natural Gas Index for the period
1 May 1998 to 30 April 1999 is presented.



Overview

•Weather Derivatives in Energy Markets
(Sw., A. & Cui, Kaijie: The J. Energy Markets, V.8, N.1,
March 2015, 59-76)



Overview

•Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

We used future contracts written on temperature to demon-
strate the hedging strategies for commodities as an application
of weather derivatives.

Our focus was on the dynamic hedging strategy of energy futures
using temperature futures and constructing the hedge ratio.



Overview

• Weather Derivatives in Energy Markets
(Sw. & Cui, Kaijie: The J. Energy Markets, V.8, N.1, March
2015, 59-76)

The weather derivatives market, in which contracts written on
weather indices was firstly appeared over-the-counter (OTC) in
July 1996 between Aquila Energy and Consolidated Edison Co.
from United States. After that, companies accustomed to trad-
ing weather contracts based on electricity and gas prices in order
to hedge their price risks realized by weather during the end of
1990s and the beginning of 2000s. Consequently, the market
grew rapidly and expanded to other industries and to Europe
and Japan.



Overview

• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Reported fromWeather Risk Management Association (WRMA),
an industry body that represents the weather market, recently,
the total notional value of the global weather risk market has
reached $11.8 billion in 2014. With geographic expansion, the
OTC market boosted nearly 30% in 2014. In this article, we
concentrated on the market of temperature derivatives found at
the Chicago Mercantile Exchange (CME), which is one of the
largest weather derivatives trading platforms. Up to now, the
CME has weather futures and options traded based on a range
of weather indices for 47 cities from United States, Canada, Eu-
rope, Australia and Asia.
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

As a common sense, weather affects different entities in different
ways. In order to hedge these different types of risks, weather
derivatives are written on different types of weather variables or
weather indices. The most commonly used weather variable is
the temperature. Widely used temperature indices include cumu-
lative average temperature (CAT), heating degree days (HDD)
and cooling degree days (CDD). They are originated from the
energy industry, and designed to correlate well with the local
demands for heating or cooling.



Overview

• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

CAT is defined as the sum of the daily average temperature over
the period [τ1, τ2] of the contract, the index CAT:=

∑τ2
t=τ1

T (t) =∫ τ2
τ1
T (t)dt, where T (t) is the daily average temperature. It is

mainly used in Europe and Canada. In winter, HDD are used to
measure the demand for heating, i.e. they are a measure of how
cold the weather is and usually used in United States, Europe,
Canada and Australia. In contrast, CDD are used in summer to
measure the demand of energy used for cooling and a measure of
how hot the weather is. They are usually used in United States,
Canada and Australia.



Overview

• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The definitions for HDD and CDD are given by HDD:=max(T (t)−
c,0) and CDD:=max(c − T (t),0), where the constant c denotes
the threshold, say 65◦F (18◦C). Since most air conditioners are
switched on when temperatures are above or below c.



Overview

• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

With respect to our model, consider the weather index T (t),
which is the daily average temperature (DAT). We suppose the
DAT has a generalization of the Ornstein-Uhlenbeck dynamics

dT (t) = ds(t) + k(T (t)− s(t))dt+ σ(t)dL(t),

where L(t) is a Lévy process (jump-diffusion), s(t) is the seasonal
mean level and k is the speed in which the temperature reverts to
s(t). σ(t) is assumed to be a measurable and bounded function
represents the seasonal volatility of temperature.

In the simplest case, L(t) = W (t)-a standard Wiener process.
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

This model was firstly introduced by Dornier and Queruel (2000)
with Brownian motion as the random noise. Benth and Saltyte-
Benth (2005) has successfully applied this model with generalized
hyperbolic Lévy process to the Norwegian temperature data. We
applied this model to our Canadian temperature data (Sw. &
Cui (2013)).



Overview

•Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

We define the temperature futures prices written on CAT, CDD
and HDD, which constitute the three main classes of futures
products at CME market. Consider the price dynamic of future
written on CAT over specific time period [τ1, τ2], with τ1 < τ2.

Firstly, assume the daily average temperature follows stochastic
differential equation with L(t) being Lévy process and a constant
continuously compounding interest rate r.
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The future price FCAT (t, τ1, τ2) at time 0 ≤ t ≤ τ1 based on CAT
under risk-neutral probability measure Q is:

FCAT (t, τ1, τ2) = EQ[
∫ τ2

τ1

T (s)ds|Ft],

where Q is the risk-neutral measure (specified through Esscher
transform) and Ft is σ-algebra generated by L(t).
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Similarly, the risk-neutral CDD and HDD future prices are defined
as:

FCDD(t, τ1, τ2) = EQ[
∫ τ2

τ1

max(T (s)− c,0)ds|Ft],

and

FHDD(t, τ1, τ2) = EQ[
∫ τ2

τ1

max(c− T (t),0)ds|Ft],

The relationship between futures prices of CAT, CDD and HDD
is defined as

FCAT (t, τ1, τ2) + FHDD(t, τ1, τ2) = c(τ2 − τ1)− FCDD(t, τ1, τ2).
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Our focus will be on the dynamic hedging strategy of energy
futures using temperature futures. In the spirit of Broadie and
Jain (2008), consider a portfolio at time t containing one unit of
energy (e.g. heating oil) future FE and βt (βt is the hedge ratio
for energy future FE) units of weather futures FW , both with
maturity (delivery) at time T. Assume the portfolio has value
Π(t) at time t, a constant risk-free interest rate r, then

Π(t) = e−r(T−t)[FE(t) + βtFW (t)]. (1)
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The portfolio is self-financing, so the change in this portfolio in
a small amount of time dt is given by

dΠ(t) = rΠ(t)dt+ e−r(T−t)[dFE(t) + βtdFW (t)]. (2)
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Hence, in order to dynamically hedge the energy future FE with
maturity T , the stochastic component of portfolio vanishes, the
hedge ratio βt could be defined as

βt = −
dFE(t)

dFW (t)
, (3)

with an assumption that dFW (t) 6= 0. Therefore, from the last
equation, to hedge an energy futures, we are required to hold βt
units of temperature future at time t.
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The data used to calibrate the energy future consist of daily
generic observations of WTI light, sweet crude oil futures prices
(these data are obtained from Bloomberg financial service) with
delivery periods in the first two front months. The WTI crude
oil futures data used in calibration cover the CME exchange daily
settlement prices ranging from January 2nd, 2001 to December
31st, 2010, resulting in 2508 record for each future contracts set
(this choice of data set is consistent with that in Swishchuk and
Cui (2013), which is 10 years of temperature data from January
1st, 2001 to December 31st, 2010 in Calgary, AB, Canada).



Overview

• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Table below presents the estimation results for the energy model
applied to the WTI crude oil future price data. The last two
parameters ξ1 and ξ2 are the diagonal entries of matrix H :=

V ar(εt) with random noise εt.

Parameter µ σE κE θ ξ1 ξ2
Estimation 3.9187 0.0215 0.0025 0.2009 0.0003 0.0123
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• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

For the temperature market, we follow the calibration proce-
dure described in Sw. and Cui (2013) to get the parameter set
ΘW = {κW , σW}. For illustration purpose, we choose the esti-
mated parameters in Calgary as the ones under the temperature
market to calculate the hedge ratio. Recall the calibration re-
sults for Calgary in Swishchuk and Cui (2013), we could get the
parameter set ΘW = {κW , σW} in Calgary as follows:
κW = −0.2411
and annual seasonal volatility
σW = 4.424 + 1.633 cos(0.0167t) + 0.1912 sin(0.0167t).
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•Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

To calculate the correlation parameter ρ, we use the correlation
between the filtered log-spot price and daily average temperature
as a natural approximation to ρ. By taking all the daily average
temperature on the dates with future prices available, and cal-
culating the correlation coefficient between log-spot prices and
average temperature of these days over 10 years (from January
2nd, 2001 to December 31st, 2010), we have the correlation
ρ = 0.1058. This correlation indicates a positive correlation
between the log-spot price of crude oil and daily average tem-
perature.



Overview

• Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

With the calibrated parameters in energy model and tempera-
ture model, we could then calculate the dynamic hedge ratio βt
explicitly.

In the Figure below, we plot the initial hedge ratio β0 along the
crude oil future delivery time (in days) and initial log-spot price
dimensions.
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Overview

•Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

From this Figure, we could find that if one hold a crude oil
futures, initially he need to short some CAT futures in the port-
folio depending on the spot price of the crude oil and the time
to delivery (trade termination) length. Basically the number of
temperature futures one need to hold will be more with longer
time to delivery and higher spot price of the crude oil.



Overview

•Pricing Crude Oil Options using Lévy Processes
(Shahmoradi, Akbar & Sw., A.: The J. Energy Markets, V.9,
N 1, March 216, 47-64)

Crude oil prices exhibit significant volatility over time and the
distribution of returns on crude oil prices show fat tails and skew-
ness, and they barely follow normal distribution.



Overview

•Pricing Crude Oil Options using Lévy Processes
(The J. Energy Markets, V.9, N 1, March 216, 47-64)

This was the reason we used Normal Inverse Gaussian Process
(NIG), Jump Diffusion Process (JD), and Variance-Gamma Pro-
cess (VG) as three Lévy processes that do not have these draw-
backs and their tails carry heavier mass than normal distribution.
Our results indicate that all these three Levy processes have very
good out of sample results for near at the money options than
others.



Overview

• Pricing Crude Oil Options using Lévy Processes
(The J. Energy Markets, V.9, N 1, March 2016, 47-64)

The volatility of crude oil prices is very important for policy mak-
ers, crude oil producers and refineries. We used most recent data
through April 2016 from crude oil futures and options markets
to model dynamics of crude oil prices. Our results indicate that
crude oil prices show significant jumps that are very frequent.
Crude oil price returns show skew as well. These findings are
consistent across all three models we used in this research.
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• Pricing Crude Oil Options using Lévy Processes
(The J. Energy Markets, V.9, N 1, March 2016, 47-64)

In the case of JDM, the volatility of size of the jumps is bigger
than volatility of the diffusion part. The VG process results
in slightly smaller volatility than JDM. The mean of the jump
component size implied by JDM, and skew parameter of VG
process both indicate existence of right-skew in crude oil price
returns, but the NIG process implies that the density of returns
are skewed to the left.
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•Energy Market Contracts with Delayed and Jumped Volatil-
ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, World Scientific, 2019)

In this paper we concentrated on stochastic modelling and pricing
of energy markets’ contracts for stochastic volatilities with delay
and jumps. Our model of stochastic volatility exhibits jumps and
also past-dependence: the behaviour of a stock price right after
a given time t not only depends on the situation at t, but also
on the whole past (history) of the process S(t) up to time t.



Overview

•Energy Market Contracts with Delayed and Jumped Volatil-
ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, World Scientific, 2019)

The basic products in these markets are spot, futures and forward
contracts and options written on these. We study forwards and
swaps. A numerical examples is presented for stochastic volatility
with delay using the Henry Hub daily natural gas data (1997-
20011).
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• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Let the stochastic process S(t) be denoted as (er call it Geo-
metric Models with Stochastic Delayed and Jumped Volatility):

lnS(t) = ln Λ(t) +
m∑
i=1

Xi(t) +
n∑

j=1

Yj(t),



Overview

• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

where for i = 1, ...,m

dXi(t) = (µi(t)− αi(t)Xi(t))dt+ σi(t,Xi(t+ θ))dB(t),

and for j = 1, ..., n

dYj(t) = (δj(t)− βj(t)Yj(t))dt+ ηj(t, Yj(t+ θ))dIj(t).



Overview

• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Here, θ ∈ [−τ,0], τ > 0, is the delay, and on the interval [−τ,0],
Xi(t) = φi(t) and Yj(t) = ψj(t), where φi(t) and ψj(t) are deter-
ministic functions, i = 1, ...,m and j = 1, ..., n.

We remark that two factors Xi(t), i = 1, ...,m, and Yj(t), j =
1, ..., n, represent the long- and short-term fluctuations of the
spot dynamics which may be correlated. We suppose that jumps
components Ij are independent, which is an obvious restriction
of generality.
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• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

The deterministic seasonal price level is modelled by the function
Λ(t), ( seasonal function) which is assumed to be continuously
differentiable.

The coefficients µi, αi, δjβj are all continuous functions. We sup-
pose that volatilities σik(t) and ηj(t) are stochastic volatilities
with delay and jumps.
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• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

We consider two cases in this situation:

dσ2
i (t,Xi(t+θ))

dt = γ1
i Vi + α

τ [
∫ t
t−τ σi(u,Xi(u+ θ)dB(u)

+
∫ t
t−τ σi(u,Xi(u+ θ)dÑ1(t)]2

− (ai + bi)σ
2
i (t,Xi(t+ θ))

and



Overview

• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

dη2
j (t,Yj(t+θ))

dt = γ2
jWi + α

τ [
∫ t
t−τ ηj(u,Xj(u+ θ)dB1(u)

+
∫ t
t−τ σi(u,Xi(u+ θ)dÑ2(t)]2

− (cj + dj)η
2
j (t,Xi(t+ θ)
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ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Here, B(t) and B1(t) are two independent Brownian motions
and Ñ1(t) and Ñ2(t) are two independent compensated Poisson
processes with intensities λ1 and λ2, independent of B(t) and
B1(t).

We note, that in [Benth et al., (2008)] it was considered only
deterministic σi(t) and ηj(t).
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(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

A simple model for the spot price is considered (τ is the delay
parameter.):

lnS(t) = X(t),

where

dX(t) = γ(k −X(t))dt+ σ(t,X(t))dB(t),

and

σ2(t,X(t))

dt
= [α+ β

∫ t

t−τ
σ(s,X(s))dB(s)]2 + cσ2(t,X(t)).
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(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

The model for σ2(t,X(t)) above is the same as the model for
stochastic volatility with delay that we considered in [Kazmer-
chuk, Swishchuk and Wu, 2005].
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tions, 2019)

Discrete scheme is implemented: l = 2 = [ τ∆], where ∆ is the
size of the mesh of the discrete-time grid, [, ] is the floor function.

Estimated Parameters are (Courtesy- [Otunuga and Ladde, 2014]):

γ k τ α β c

1.8943 1.5627 0.008 0.433 − 0.07 − 1.5
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• Energy Market Contracts with Delayed and Jumped
Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Graphs below, Figure 2, includes Real, Simulated Spot Prices
and Simulated Expected Spot Price ( Henry Hub Daily Natural
Gas Data Set (02/01/2001-09/30/2004)):



Figure 2: Real, Simulated Spot Prices and Simulated Expected Spot Price

(Courtesy-[Otunuga and Ladde, 2014])
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Volatilities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Graph below, Figure 3, shows simulated σ(t,X(t)) from Henry
Hub Daily Natural Gas Data Set (02/01/2001-09/30/2004)).



Figure 3: Simulated σ(t,X(t)) (Courtesy-[Otunuga and Ladde, 2014])
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•Energy-switching and Carbon Pricing
( Arrigoni, A., Goutte, S., Lu, W. & Sw., A.: ’Energy-switching
using Lévy Processes-An Application to Canadian and Noth Amer-
ican Data’, J. Energy Markets, 2019, submitted)

The Paris agreement in 2016 marks a global effort to limit the
increase in temperature. In that spirit, the Federal Government
of Canada introduced a carbon tax to reduce greenhouse gas
emissions.

The main goal of this paper is to define the correct approach to
carbon pricing.
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•Energy-switching and Carbon Pricing
( Arrigoni, A., Goutte, S., Lu, W. & Sw., A.: ’Energy-switching
using Lévy Processes-An Application to Canadian and Noth Amer-
ican Data’, J. Energy Markets, 2019, submitted)

Following the method, introduce by Goutte and Chevalier (2015),
we define the carbon price as the necessary tax to incite elec-
tricity producers to switch from coal to natural gas.
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•Energy-switching and Carbon Pricing
( Arrigoni, A., Goutte, S., Lu, W. & Sw., A.: ’Energy-switching
using Lévy Processes-An Application to Canadian and Noth Amer-
ican Data’, J. Energy Markets, 2019, submitted)

The novelty of this paper is that we use this method for Alberta
and North America. In addition, we consider the case of switch-
ing from natural gas to wind as a potential new approach to
carbon pricing.

More details: Poster presented by Weiliang Lu (today, 14:40-
15:15pm).
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•A Vision to Transition to 100% Wind, Water & Solar
Energy in Canada

A group of U.S. civil engineering has calculated that Canada
could be completely powered by renewable energy, if we just de-
cide to do it.

They say that would save $110.1 billion on health care costs ev-
ery year and prevent 9,884 annual air pollution deaths.

Their research is available at thesolutionsproject.org.
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A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada



A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada



A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Health Cost Savings





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Land Usage





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Average Energy Costs in 2050





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Money in Your Pocket





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Vancouver











A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Calgary











References

Sw., A. (2008): Explicit option pricing formula for a mean-
reverting asset in energy market. J. Numer. Appl. Mathem.,
1(96), 216-233. (Proceed. Intern. School ’Finance, Insur. &
Energy Markets-Sustainable Develop.’, May 5-9, 2008, Västerås,
Sweden).

Sw., A. (2013): Variance and volatility swaps in energy markets.
The J. Energy Markets, 6(1), 33-50.

Sw., A. and Cui, K. (2013): Weather derivatives with applica-
tions to Canadian data. J. Math. Finance, 3(1), 81-95.

Cui, K. & Sw., A. (2015): Applications of weather derivatives in
energy market. The J. Energy Markets, 8(1), 59-76.



References

Shahmoradi, A. & Sw., A. (2016): Pricing crude oil options usinf
Lévy processes. The J. Energy Markets, 9(1), 47-64.

Sw., A. (2019): Stochastic modelling and pricing of energy mar-
ket contracts with local stochastic delayed and jumped volatil-
ities. Handbook of Energy Finance: Theories, Practices and
Simulations. World Sci., September 2019.

Arrigoni, A., Goutte, S., Lu, W. & Sw., A. (2019): Energy-
switching using Lévy Processes-An Application to Canadian and
North American Data. J. Energy Markets. Submitted.

www.thesolutionsproject.org



Conclusion

In this talk we overviewed my recent results in energy market
modelling, including:

- option pricing formula for a mean-reversion asset,
- variance and volatility swaps in energy markets,
-applications of weather derivatives in energy markets,
- pricing crude oil options using Lévy processes,
-energy contracts modelling with delayed and jumped volatilities,
and some latest results on
-energy-switching and carbon pricing.

I also talked about the clean renewable energy prospective, and
a vision to transition to 100% wind, water & solar energy in
Canada, and, in particular, in Vancouver and Calgary.



The End

Thank You!

Q&A time!


