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Polynomial processes ENEERRY

A polynomial process has the property that any
conditional expectation of the form E[U(X;)|X],
where W is a polynomial, is itself a polynomial
function of X, with degree at most that of W.

Some familiar examples...

OU dX; = k(0 — X;)dt + odW;
GBM dX; = X;(udt + cdWy)

IGBM dX; = k(0 — Xy)dt + o X dW;

CIR dXt = 11(9 — Xt)dt -+ O \/ Xtth



Polynomial processes: more examples ENEERRY

Jacobi dX; = k(6 — X,)dt + o/ X (1 — X;)dW,
In this case, X; € (0,1) a.s. if 2smin{f,1 — 6} > o2.

Exponential Lévy If X; = xelt, where L is a Lévy process with

triplet (b, ¢, i), and if/ e u(dy) < oo, then X is m-
ly|>1
polynomial.

Lévy-driven SDEs Here d.X; = Z V;(X;_)dL!, where the functions

2
V; are affine. (This is m-polynomial if m moments of the Lévy
measure are defined.)



Polynomial processes ENEERRY

How does it work?
If G is the infinitesimal generator of a 1-D polynomial diffusion X},
then the action of G on a polynomial function

N

U(x) = ana:"

n=0

can be represented by a matrix multiplication of the coefficient vector
P = (p())pl) « .. 7pN),, i.e.

N

G¥](z) = 3 (Gp)na"

n=0



Polynomial processes ENEERRY

How does it work?
Using this matrix representation, for s < ¢,

N
E[W(X,)|X,] = Z (eG(t—s) P)nX:' — H(X,)eCt=9)p,
n=0
where H(z) = (1, z,22,...,z") is the vector of basis functions.

An example
For the OU process, if ¥ is a polynomial of degree 4,

0 kO o2 0 0 |
0 —k 2k6 302 0
G=10 0 -2k 3kO 602
0 O 0 -3k 4k0
0 O 0 0 —4K




Polynomial processes: applications in
finance
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In an arbitrage-free market, with a state price

o Moment estimation density (a positive semimartingale (), the model

o Valuation price II(t, T') of a cash flow C is given by
o Bond markets
o Credit risk (¢, T) = lJE[CTCTIE].
o Stochastic volatility t
o Energy markets If ¢ = e~ p(Xy), and O = q(X7) for poly-

nomials p and g, where X, is a polynomial diffu-

o Variance reduction . —— :
sion, then II(¢, T") is rational in X.

v'C. Cuchiero, M. Keller-Ressel, and J. Teichmann. Polynomial processes and
their applications to mathematical finance. Finance and Stochastics, 2012.

v'D. Filipovi¢ and M. Larsson. Polynomial diffusions and applications in finance.
Finance and Stochastics, 2016.
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Energy commodity markets: natural gas

Henry Hub ‘Freedom Molecules’ - day-ahead prices
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» High volatility (sometimes)
» Occasional extreme spikes
» Mean reversion

» Seasonality?
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Energy commodity markets: natural gas
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Henry Hub Futures
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Energy commodity markets: emissions e
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» Futures prices with different maturities highly correlated
» Prices constrained to lie in a bounded interval
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Energy commodity markets: power ENEERRY

Hourly Pool Pri MWh
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» Frequent extreme peaks
> Prices constrained to lie in a bounded interval
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Energy commodity markets: power ENEERRY

Daily Average Pool Price ($/MWh)
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» Frequent extreme peaks (even in daily averages)
» Prices constrained to lie in a bounded interval
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Energy commodity markets: AB power "c"xf'm
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Modelling energy prices ENEERRY

Commonly, energy price models take the form S; = ¥ (X;), where
X is a vector of underlying factors (and often W is an exponential
map).

e In Schwartz-Smith (2000), | S; = e5¢TX¢ |, with £ and x following
correlated OU processes.

e For Barlow (2002), ¥ is conceived of as representing a demand-
price curve. Demand is a linear function of a factor X; which is
modelled as an OU process:

dXt — —K,(Xt — H)dt == O'th,

1
le”

(1—|—oza:) if 1 +ax > €,
1

and (for some a < 0) ¥(z) =
€5 otherwise.
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Modelling energy prices ENEERRY
... using polynomial processes

e |f the map W is a polynomial, then we can exploit the freedom
in the choice of ¥ to generate extreme dynamics even if X, is
relatively tame.

e |f X, follows a polynomial process under a pricing measure Q,
then futures prices can be computed explicitly:

F(t,T) = H(X;) e Y p(1),

where G is the matrix representation of the generator of X;
with respect to the basis H.
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Modelling energy prices ENTERRY

... using polynomial processes
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Example: IGBM and natural gas ENEERRY
Recall the IGBM process:
dXt = /@(6’ — Xt)dt + O'Xtth.

Here X; > O a.s.ifk,0 > 0.
For S; = W (X4), ¥ should be increasingon R, .

e \We search over all increasing cubic maps
¥ on [0, 00), normalized so that ¥ (0) = 0,
and [~ e " U(z)dz = 1.

e These are characterised by S 1

V(2) = §2° + (1 — a = y)z + 1, with
(v, @) in the green region.

e For higher degree maps, we can represent ¢,
U’ as a product of such factors. Y

e T —

—
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Example: IGBM and natural gas ENEERRY

If we want to look at discretizations of the IGBM process, it makes
sense to use a semi-implicit method such as split step backward Euler
(Higham, Mao, Stuart 2002):
X*=X,+hk(0—X")
Xpi1=X*+0X*VhZ,,

with Z,, ~ N (0, 1).
This has the property that it is a discrete polynomial process.

To estimate the model—including the polynomial map ¥ —we used
MLE, and we used the discrete process to define the conditional tran-

sition likelihoods.

19



Example: IGBM and natural gas

Historial Data

Simulation

o

UNIVERSITY OF

CALGARY

2010 2012 2014 2016 2018

Simulation of iGBM
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Example: IGBM and natural gas ENEERRY

Historial Data Simulation

2010 2012 2014 2016 2018 2010 2012 2014 2016 2018

10 Simulation of iGBM Polynomial Map
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4l degree 7
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Alberta power ENEERRY

* Power prices in Alberta must stay between SO and $1000 per

MWh, and so we need to have a process that lives in this
interval.

* One possible approach (taken by Carmon, Fehr and Hinz, 2009,
in the context of emissions prices) is to use a normal CDF to map
between the real line and the bounded interval.

* But we want something that will — naturally — allow us to express
futures prices (almost) explicitly, and so we use a polynomial
process that lives on a bounded interval — the Jacobi process.
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Jacobi process ENEERRY

The characteristics of the Jacobi process | aeis027

dX; = k(0 — X;)dt + o/ X (1 — X,)dW,

are determined by the dimensionless quantities

2k(1 —
A:%andB: fi( 5 9).

o2

o

In terms of these quantities, the SDE takes the form

0.2

dX; = 7(A(1—Xt)—BXt)dt+a\/Xt(1 — X,)dW,

and, as already noted, X; € (0, 1) almost surely if
min{A, B} > 1.
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Jacobi process: some facts N

Conditional on X, = x¢, the density of X is given by

p(xa ta Lo, tO) — Z knwn(x())wn(x)w(x)e_}\n(t_t())7
n=0

where )
A= (A+B-1+nn.
L (A+B—-14+2n)(A),(A+ B),
" nl(A+B—-14+n)(B), ’
_T'(A+B) 4,4 B-1
w(x)_F(A)F(B)xA (1—x)" 7,

B i (A+B—-14+n) bk
— B, ,
and we have used the notation (-); :=I'(- + k) /T'(+).

25
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Jacobi process: polynomial maps ENEERRY
e Look for a polynomial ¢ that is non-negative on [0, 1], and set
_ foﬂC Y(y)dy

) v(y)dy
from [0, 1] — [0, 1].

U(x) , so that WU is increasing and onto as a map

e We construct v as a product of quadratic factors of the form
V(x) = qop(2z — 1), where g4 g(z) = az® + 28z + 1 — 1q,

and the point («a, ) lies within the shaded area below.
(20 —3)2+126* =9

< :

-3/2
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Spot model estimation ENEERRY
e Given the freedom to choose the form of the polynomial map,

we seek to determine both the parameters of the Jacobi pro-

cess and the optimal polynomial map ¥ together, using MLE

and Hamilton-style filtering.

e The maximum likelihood used initial parameter estimates
generated from optimal lower-degree models, exploiting the
nested construction of the polynomial maps:

e The map V¥ depends on a sequence of polynomial parameters

(61705175270527 o« o )7

with the degree being the number of parameters plus two.

e An initial estimate for a model can be formed from the lower-
degree model by adding a zero to the polynomial parameters.

27



Spot model: estimation
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[ deg¥ ]| 7] 2_] 3] a [ 5\] 6] 7] 8]
A 1.00 1.61 1.70 212 ] 1.95 | 1.86 1.71 2.48

B 8.62 6.17 3.05 2.84 1.98 2.21 2.83 3.05

o 11.93 10.66 10.55 10.03 10.48 10.22 9.49 8.70

co 0.50 0.40 0.30 0.26 0.21 0.24 0.28 0.26

cq 0.50 0.50 0.44 0.42 0.36 0.39 0.43 0.41

co 0.10 0.20 0.22 0.23 0.24 0.21 0.22

cg 0.06 0.08 0.13 0.11 0.06 0.08

cq 0.01 0.05 0.03 0.00 0.00

cy 0.01 0.00 0.01 -0.00

cq -0.00 0.01 0.01

cm 0.01 0.01

cg 0.00
| LL ]| 187030 | 192534 [ 214811 [ 2154.10 2186.09 2186.38 | 2188.26 | 2190.50 |
[ BIC || -3720.81 | -3824.29 | -4263.24 | -4268.63 -4326.02 -4319.99 | -4317.16 | -4315.03 |
[ OSLL [ 909.88 | 94440 | 106096 | 1062.46 [\ 106264 [[ 1062.94 | 1063.87 | 1064.60 |
| OSBIC || -1802.06 | -1865.21 [ -2092.42 | -2089.53 [\-2083.97 /[ -2078.69 | -2074.65 | -2070.19 |
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Spot model: results ENEERRY

Alberta daily power prices (in sample) (out of sample)
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c c
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Spot model: results ENEERRY

Alberta daily power prices (in sample) (out of sample)
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Spot model: results ENEERRY

Alberta daily power prices (in sample) (out of sample)
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Multi-factor models ENTERRY
Several multifactor models on the interval are possible. For example,

e Feedback from X; into the drift of Y;:

dX; = (bl + B11X¢ + Blzn)dt -+ 0'\/Xt(1 — Xt)qu
dY; = (bo + B2y X¢ + BaoYy)dt + p/Yi(1 — ;) dWoy.

e The range of X; depending on Y;:

dX; = (b1 + B11 Xy + B12Y3)dt + o/ Xe(pu + vY; — X)dWy,
dY; = (bo + B2y Xy + BYy)dt + p/Yi(1 — Y;)dWo.

for suitable parameters 1 > 0 and v > 0. Here X, takes values
in [0, u + vY};] and Y; takes values in [0, 1].

32
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Multi-factor models ENEERRY
If we have a polynomial process on the unit simplex:
Z; € {[O, N |Z1: + ... Zne = 1} (cf. Filipovié, Larsson 2016),

we can construct a finite number of (possibly time-dependent) poly-
nomial maps ¥,, forn =1, ..., N, with coefficients p,,(¢) and set

Sy = H(X4) Y Znipal(t).

For a two-factor model, we can take Z; € |0, 1] to also be a Jacobi
process. In this case we write

Sy = H(X:)|[(1 — Z)po(t) + Zepa(t)],

and now we are dealing with a continuum of potential polynomial
maps, indexed by Z; at any given moment.

33
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Multi-factor models: spot estimation

Alberta daily power prices

600 |
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Jacobi process Y;
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Days Days X
[(dega & ] 2 3 1] 4] 5l | 6 ]

A 254 252 2.83 310 3.03
B 10.72 433 4.03 554 523
o x 5.70 716 7.09 638 653
Ay~ 1.03 7.27 10.40 2.04 2.20
By~ 4.08 2.72 434 1.22 1.36
oy 0.95 1.06 1.02 1.38 1.36
<9 0.81 1.00 1.00 0.72 0.76
<8 0.79 0.81 0.89 0.89
34 0.05 0.77 0.77
<9 0.61 0.57
e -0.08
1 1.00 0.99 0.97 0.99 0.99
e 0.61 0.66 0.66 0.66
cx 0.71 -1.00 -1.00
cq -0.79 -0.59
cx 0.34
L 2915.7 3633.5 36371 3648.8 3650.5
BIC 57731 -7194 1 -7186.7 -7195.7 -7184.3

Optimal parameters, log-likelihoods and Bayesian Information Criterion (BIC) scores
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Futures prices ENEERRY
Changes of measure for Jacobi processes

Under the assumption that min{ A, B} > 1, a pricing measure Q can
be specified via the market price of risk

Y = VAXt—VB(]_—Xt)
t — )
VX (1 — Xy)

o
where 4 and vp are constants satisfying v4 > —§(A — 1) and

v > —%(B — 1). The factor dynamics become

2
dX, = % (Ag(1 — X;) — BoX,)dt + o/ X (1 — Xy) dW,

where Ag = A+ 2v4/0and Bg = B+ 2vp/o.

35
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Futures prices ENEERRY
o |f Gé denotes the matrix representation of the infinitesimal
generator of the process followed by X; in the basis of Jacobi

polynomials with parameters Ag and Bg (and similarly for Y3),
then the corresponding matrix for the joint process is

Go =Gy ® Gy
e Similarly, we can express the joint basis of Jacobi polynomials as
H(z,y) = H* (z) @ H" (y).
e Then futures prices (given X;, Y;) are given by
F(t,T) = H(X;,Y;) eT-9Cp.

where the coefficients p represent the map W in this basis.
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Futures prices ENEERRY

Unless we observe (X;, Y;) directly, we need to compute the
expected value of this conditional on /;. The density needed
for this is directly available from the filtering procedure.

There is also the problem of seasonality. In these computations
we used a seasonally-varying market price of risk to calibrate to
market futures prices.

This results in the formula
1 2 N
F(to,tn) = qp e [T T, e"2C% Iy Iy e Ce p,

where qo = E[H (X, Yo)|Fo], hnn = tn — tn_1, the t,, denote
times where the prices of risk change, and the matrices I ', I,,
are used to implement the changes of basis.
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Futures prices: model simulation
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Simulated day-ahead and futures prices
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Valuation of other derivatives e oS

e The formula
F(to,tn) = [qu MG I e % L I Ty POl ]p’

is the basis for valuation of other cash flows.

e To value a payoff A(St) = A(V (X7, Yr)), we must find the
coefficients of the vector p that represent the approximation of
this in the polynomial basis at time 1" = t .

e |n practice, the vector multiplying p is rapidly decaying, and so
only a few coefficients need to be calculated (but the need to
be calculated accurately).

e This is entirely analogous to (for example) the COS method of
Fang and Oosterlee.
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Thank for your attention!

Tony Ware
aware@ucalgary.ca
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