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Introduction

Stochastic Dynamic Programs

Many decision-making problems are stochastic and dynamic by nature. For
example,

Water resources allocation: How much
water to allocate to different users
every year, given that water supply and
demand are uncertain.

Bond investment planning: How much
bond(s) to borrow/lend every month,
given that rates of return are uncertain.
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Introduction

Dynamics

x1  ξ2  x2

 ξ3  x3  . . . ξT  xT

Stochastic programming, stochastic optimal control, Markov decision
processes are ways to model these problems, among others.

We focus on a particular class of problems:

Multistage stochastic program (MSP)
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Introduction

General Formulation of MSP

min
x1,x2,...,xT

E [g1(x1, ξ1) + g2(x2, ξ2) + . . .+ gT (xT , ξT )]

s.t. xt ∈ Xt := Xt(x[t−1], ξ[t]), t = 1, 2, . . .T ,

where

ξ[t] and x[t]: history of stochastic process and decisions up to stage t

xt := xt(ξ[t]): decision made at each stage

Xt := Xt(x[t−1], ξ[t]): feasibility set in stage t

gt(xt , ξt): cost of decision xt given the realized uncertainty ξt at
stage t
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Introduction

General Formulation of MSP

min
x1,x2,...,xT

E [g1(x1, ξ1) + g2(x2, ξ2) + . . .+ gT (xT , ξT )]

s.t. xt ∈ Xt := Xt(x[t−1], ξ[t]), t = 1, 2, . . .T ,

where

qt : known stage-t probability measure

qt|ξ[t−1]
: conditional distribution of stage t, conditioned on ξ[t−1]

Eqt |ξ[t−1]
[·]: conditional expectation w.r.t. qt|ξ[t−1]
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Introduction

Nested Formulation of MSP

min
x1∈X1

g1(x1, ξ1)+Eq2|ξ[1]

[
min
x2∈X2

g2(x2, ξ2) + Eq3|ξ[2]

[
. . .+ EqT |ξ[T−1]

[
min

xT∈XT

gT (xT , ξT )

]
. . .

]]
,
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Introduction

Nested Formulation of MSP

min
x1∈X1

g1(x1, ξ1)+Eq2|ξ[1]

[
min
x2∈X2

g2(x2, ξ2) + Eq3|ξ[2]

[
. . .+ EqT |ξ[T−1]

[
min

xT∈XT

gT (xT , ξT )

]
. . .

]]
,

Features/Assumptions

Expectation is w.r.t. known joint probability distribution of {ξt}Tt=1

Assume ξt has finitely many possible realizations, so we can represent
the process using a scenario tree

Optimization is done over policies x := [x1, . . . , xT ]
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Introduction

Drawbacks of the Previous Model

The decision maker

1 is risk-neutral,

2 have complete information about the underlying uncertainty via a
known probability distribution.

−→ What if this is not the case?

The distributionally robust version of the problem (multistage DRSP)
addresses the situation where the decision maker

1 might be risk-averse,

2 might have partial information about the underlying probability
distribution, e.g., from historical data and/or expert opinions.
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Introduction

Motivation

Address the following fundamental research questions in the context of
multistage DRSP (and many other decision-making problems under
uncertainty):

Q1: What uncertain scenarios are important to a multistage DRSP
model?

How to define important scenarios?

How to identify important scenarios?
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Introduction

Motivation

Q2: What can be inferred from important scenarios in real-world
applications?

Encourage decision makers to collect more accurate information
surrounding these scenarios

Help decision maker to choose an appropriate size for the ambiguity
sets

Improve Decomposition Algorithms

Scenario Reduction
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Multistage Distributionally Robust Stochastic Program (DRSP)

Nested Formulation of Multistage DRSP

min
x1∈X1

g1(x1, ξ1) +

max
p2∈P2|ξ[1]

g Ep2

 min
x2∈X2

g2(x2, ξ2) +

max
p3∈P3|ξ[2]

g Ep3

[
. . .+

max
pT∈PT |ξ[T−1]

g EpT

[
min

xT∈XT

gT (xT , ξT )

]
. . .

] ,
where

Pt|ξ[t−1]
is the conditional ambiguity set for stage-t probability measure,

conditioned on ξ[t−1].
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Multistage Distributionally Robust Stochastic Program (DRSP)

Approaches to Construct the Ambiguity Set

Moment-based sets: distributions with similar moments

(Shapiro, 2012), (Xin et al., 2013), (Xin and Goldberg, 2015)

Distance-based sets: sufficiently close distributions to a nominal
distribution with respect to a distance

Nested distance (Wasserstein metric): (Pflug and Pichler, 2014), (Analui

and Pflug, 2014)

Modified χ2 distance: (Philpott et al. 2017)

L∞ norm: (Huang et al. 2017)

General theory: (Shapiro, 2016; 2017; 2018)

Total variation distance
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Multistage Distributionally Robust Stochastic Program (DRSP)

Multistage DRSP with Total Variation Distance (DRSP-V)

At stage t, given ξ[t−1], instead of considering one (“nominal”)
distribution qt|ξ[t−1]

,

Consider all distributions pt in

Pt|ξ[t−1]
=

{
pt : V(pt ,qt|ξ[t−1]

) :=
1

2

∫
Ξt|ξ[t−1]

∣∣∣pt − qt|ξ[t−1]

∣∣∣ dν ≤ γt ,∫
Ξt|ξ[t−1]

pt dν = 1,

pt ≥ 0

}
,

where Ξt|ξ[t−1]
is the sample space of stage t, given ξ[t−1].
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}
,

where Ξt|ξ[t−1]
is the sample space of stage t, given ξ[t−1].

I ensure it is a probability measure
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Effective Scenarios in Multistage DRSP

Aim

Q1: What uncertain scenarios are important to a multistage DRSP
model?

How to define important scenarios?

How to identify important scenarios?

But . . . Let’s take a look at static/two-stage case first
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Effective Scenarios in Multistage DRSP

Static/Two-Stage DRSP

min
x∈X

{
f (x) := max

p∈P
Ep [h(x , ω)]

}
,

where

X ⊆ Rn is a deterministic and non-empty convex compact set,

Ω is sample space, assumed finite

h : X × Ω 7→ R is an integrable convex random function, i.e., for any
x ∈ X , h(x , ·) is integrable, and h(·, ω) is convex q-almost surely,
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Effective Scenarios in Multistage DRSP

Static/Two-Stage DRSP

min
x∈X

{
f (x) := max

p∈P
Ep [h(x , ω)]

}
,

where

q denotes a nominal probability distribution, which may be obtained
from data, e.g., empirical distribution,

P is the ambiguity set of distributions, a subset of all probability
distributions on Ω, which may be obtained, e.g., via the total
variation distance to the nominal distribution
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Effective Scenarios in Multistage DRSP

Assessment Problem of “Removed” Scenarios

Consider “removing” a set F ⊂ Ω of scenarios:

PA := {p ∈ P : pω = 0, ω ∈ F}.

The Assessment problem of scenarios in F is

min
x∈X

{
f A(x ;F) = max

p∈PA(F)

∑
ω∈Fc

pωhω(x)

}
,

where

If Inner Max of the Assessment Problem is Infeasible: f A(x ;F) = −∞
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in DRSP
(Rahimian, B., Homem-de-Mello, 2018)

Definition (Effective Subset of Scenarios)

At an optimal solution x∗, a subset F ⊂ Ω is called effective if by its
“removal” the optimal value of the Assessment problem is strictly smaller
than the optimal value of DRSP; i.e., if

min
x∈X

f A(x ;F) < min
x∈X

f (x)

.
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in DRSP
(Rahimian, B., Homem-de-Mello, 2018)

Definition (Effective Subset of Scenarios)

At an optimal solution x∗, a subset F ⊂ Ω is called effective if by its
“removal” the optimal value of the Assessment problem is strictly smaller
than the optimal value of DRSP; i.e., if

min
x∈X

f A(x ;F) < min
x∈X

f (x)

.

Definition (Ineffective Subset of Scenarios)

A subset F ⊂ Ω that is not effective is called ineffective.

Note: Support constraints of Campi and Garatti (2018), Coreset of Agarwal et
al.(2005)
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Effective Scenarios in Multistage DRSP

DRSP with Total Variation Distance

min
x∈X

max
p∈P

n∑
ω=1

pωh(x , ω)

where

P =

{
1

2

∑
ω∈Ω

|pω − qω| ≤ γ,
n∑

ω=1

pω = 1, pω ≥ 0,∀ω

}
,
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Effective Scenarios in Multistage DRSP

Risk-Averse Interpretation

Proposition (Risk-Averse Interpretation of DRSP with Total
Variation)

fγ(x) =


Eq [h(x , ω)] , if γ = 0,

γ supω∈Ω h(x , ω) + (1− γ)CVaRγ [h(x , ω)] , if 0 < γ < 1,

sup
ω∈Ω

h(x , ω), if γ ≥ 1,

By (Jiang and Guan, 2016).
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Effective Scenarios in Multistage DRSP

How to Find Effective/Ineffective Scenarios for DRSP?

How can we determine the effectiveness of a scenario?

Resolve for any scenario ω ∈ Ω

Form the corresponding Assessment problem,
Resolve the corresponding Assessment problem,
Compare the optimal values to determine the effectiveness of the
scenario.

Exploit the structure of the ambiguity set

Propose easy-to-check conditions (based on optimal solution and
worst-case distribution) to identify the effectiveness of a scenario
Low computational cost
We might not be able to identify the effectiveness of all scenarios
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Effective Scenarios in Multistage DRSP

Notation

Consider an optimal solution (x∗,p∗) ∈ X × P to DRSP-V:

x∗ ∈ argmin
x∈X

Ep∗ [h(x , ω)]

p∗ := p∗(x∗) ∈ argmax
p∈P

Ep [h(x∗, ω)]

Define

Ω1(x∗) := [ω ∈ Ω : h(x∗, ω) < VaRγ [h(x∗, ω)]]

Ω2(x∗) := [ω ∈ Ω : h(x∗, ω) = VaRγ [h(x∗, ω)]]

Ω3(x∗) := [ω ∈ Ω : VaRγ [h(x∗, ω)] < h(x∗, ω) < supω∈Ω h(x∗, ω)]

Ω4(x∗) := [ω ∈ Ω : h(x∗, ω) = supω∈Ω h(x∗, ω)]
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Effective Scenarios in Multistage DRSP

Ineffective Scenarios

Theorem (Easy-to-Check Conditions for Ineffective Scenarios,
(Rahimian, B., Homem-de-Mello, 2018))

Suppose (x∗,p∗) solves DRSP-V. Then, a scenario ω′ with qω′ ≤ γ, is
ineffective if any of the following conditions holds:

ω′ ∈ Ω1(x∗),

ω′ ∈ Ω2(x∗) and qω′ = 0,

ω′ ∈ Ω2(x∗) and
∑

ω∈Ω2(x∗) p
∗
ω = 0,

ω′ ∈ Ω3(x∗) and qω′ = 0.
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Effective Scenarios in Multistage DRSP

Effective Scenarios

Theorem (Easy-to-Check Conditions for Effective Scenarios)

Suppose (x∗,p∗) solves DRSP-V. Then, a scenario ω′ is effective if any of
the following conditions holds:

qω′ > γ,

Ω2(x∗) = {ω′} and p∗ω′ > 0,

ω′ ∈ Ω3(x∗) and qω′ > 0,

ω′ ∈ Ω4(x∗) and qω′ > 0,

Ω4(x∗) = {ω′}.
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Effective Scenarios in Multistage DRSP

Effective Scenarios

Theorem (Easy-to-Check Conditions for Effective Scenarios)

Suppose (x∗,p∗) solves DRSP-V. Then, a scenario ω′ is effective if any of
the following conditions holds:

qω′ > γ,

Ω2(x∗) = {ω′} and p∗ω′ > 0,

ω′ ∈ Ω3(x∗) and qω′ > 0,

ω′ ∈ Ω4(x∗) and qω′ > 0,

Ω4(x∗) = {ω′}.

I Trivially Effective !
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Effective Scenarios in Multistage DRSP

Beyond Previous Theorems: Identify Undetermined
Scenarios

Theorem (Easy-to-Check Conditions to Identify Undetermined
Scenarios)

Suppose (x∗,p∗) solves DRO-V. For a scenario ω′ ∈ Ω2(x∗) with qω′ > 0,
suppose that the effectiveness of scenario ω′ is not identified by the
previous theorems. Let F = {ω′}. If

1 VaRγF [h(x∗, ω)|Fc] < VaRγ [h(x∗, ω)], and

2 either there exists a scenario
ω ∈

[
VaRγF [h(x∗, ω)|Fc] < h(x∗, ω) < VaRγ [h(x∗, ω)]

]
with

qω > 0 or Ψ|Fc

(
x∗,VaRγF [h(x∗ω), |Fc]

)
> γF ,

then scenario ω′ is effective.
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios Summary
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP

What happens in the Multistage case?
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Effective Scenarios in Multistage DRSP

Relation to Multistage Risk-Averse Optimization

min
x1∈X1

g1(x1, ξ1) + max
p2∈P2|ξ[1]

Ep2

 min
x2∈X2

g2(x2, ξ2) + . . .+ max
pT∈PT|ξ[T−1]

EpT

[
min

xT∈XT

gT (xT , ξT )

]

Multistage DRSP-V can be written as

min
x1∈X1

g1(x1, ξ1)+R2|ξ[1]

[
min
x2∈X2

g2(x2, ξ2) + R3|ξ[2]

[
. . .+ RT |ξ[T−1]

[
min

xT∈XT

gT (xT , ξT )

]
. . .

]]
,

where R’s are (real-valued) coherent conditional risk mappings

Proposition (Risk-Averse Interpretation of Multistage DRSP-V)

In the above formulation, we have

Rt+1|ξ[t]
[·] =


Eqt+1|ξ[t]

[·] , if γ = 0,

γ supξt+1∈Ξt+1|ξ[t]
[·] + (1− γ)CVaRγ [·] , if 0 < γ < 1,

supξt+1∈Ξt+1|ξ[t]
[·], if γ ≥ 1.
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP?

Now we have a scenario tree. What to do?

ξ1 ξ2 . . .

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

x∗1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP?

Questions

What is the effectiveness of a scenario (path)?

What is the effectiveness of a realization in stage t + 1?

Main Idea

Look at realizations conditioned on their history of decisions and
stochastic process

→ At an optimal policy x∗, if we look at stage t, given x∗[t−1] and ξ[t],

previous definitions on effective/ineffective scenarios hold conditionally.
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP?

ξ1 ξ2 . . .

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

x∗1

x∗t−1

x∗t
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x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t−1
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x∗T−1

x∗T−1
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP?

ξ1 ξ2 . . .

ξt
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ξT

ξT
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ξT

ξT

ξt
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP?

min
x∈X

max
p∈P

Ep [h(x , ω)]

ξ1 ξ2 . . .

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

x∗1
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x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t−1
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x∗T−1

x∗T−1
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Effective Scenarios in Multistage DRSP

Effective/Ineffective Scenarios in Multistage DRSP?

min
x∈X

max
p∈P

Ep [h(x , ω)]

ξ1 ξ2 . . .

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

x∗1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t
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Effective Scenarios in Multistage DRSP

Effective Scenarios in Multistage DRSP:
Conditional Effectiveness

Definition (Conditionally Effective Realization)

At an optimal policy x∗ := [x∗1 , . . . , x
∗
T ], a realization of ξt+1 in stage t + 1

is called conditionally effective, given x∗[t−1] and ξ[t], if by its removal the

optimal stage-t cost function (immediate cost + cost-to-go function) of
the new problem is strictly smaller than the optimal value of the original
stage-t problem in multistage DRSP.

Rahimian, Bayraksan & Homem-de-Mello Effective Scen.s in Multistage DRSP Sequential DM Workshop 29



Effective Scenarios in Multistage DRSP

Effective Scenarios in Multistage DRSP:
Effectiveness of a Scenario Path

Definition (Effective Scenario Path)

At an optimal policy x∗ := [x∗1 , . . . , x
∗
T ], a scenario path {ξt}Tt=1 is called

effective if by its “removal” the optimal value of the new problem is
strictly smaller than the optimal value of multistage DRSP.

NOTE: Removing a scenario path is defined by forcing the probability of
ξT to be zero.
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Effective Scenarios in Multistage DRSP

Difference Between Conditional Effective Realizations and
Effective Scenario Paths

min
x∈X

max
p∈P

Ep [h(x , ω)]

ξ1 ξ2 . . .

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

ξt

ξt+1 . . .

ξT
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ξt+1 . . .
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x∗T−1
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Effective Scenario Paths

min
x∈X

max
p∈P

Ep [h(x , ω)]

ξ1 ξ2 . . .

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

ξt

ξt+1 . . .

ξT

ξT

ξt+1 . . .

ξT

ξT

x∗1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

x∗1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

x∗t−1

x∗t

x∗T−1

x∗T−1

x∗t
x∗T−1

x∗T−1

Rahimian, Bayraksan & Homem-de-Mello Effective Scen.s in Multistage DRSP Sequential DM Workshop 31



Effective Scenarios in Multistage DRSP

How to Find Effective/Ineffective Scenarios for Multistage
DRSP-V?

Resolve?

Suppose each node has n children. Then, we would have to solve many
problems!

Effectiveness of Scenario Paths: nT−1 problems at stage T

Conditionally Effectiveness of Realizations: n + . . .+ nT−1

problems at stage 2 +. . . + stage T

→ AIM: Propose easy-to-check conditions
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Effective Scenarios in Multistage DRSP

Use Conditional Effectiveness of Realizations in Multistage
DRSP-V

AIM: Propose easy-to-check conditions

Theorem [Conditionally Multistage ← Two-stage]

Our easy-to-check conditions to identify effective/ineffective scenarios in
static/two-stage DRSP-V are valid conditions to identify conditionally
effective/ineffective scenarios in multistage DRSP-V.
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Effective Scenarios in Multistage DRSP

Effectiveness of Scenario Paths in Multistage DRSP-V

Consider a scenario path {ξt}Tt=1.

Theorem

If ξt is conditionally effective by our easy-to-check conditions, for all
t = 1, . . . ,T , then, the scenario path {ξt}Tt=1 is effective.

Theorem

If ξT is not trivially conditionally effective (i.e., too large nominal
conditional probability) and there exists t, t = 1, . . . ,T , such that ξt is
conditionally ineffective by our easy-to-check conditions, then, the scenario
path {ξt}Tt=1 is ineffective.
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Effective Scenarios in Multistage DRSP

Easy-To-Check Conditions for Effectiveness of Scenario
Paths

ξ1

ξ1
2

ξ1,1
3 ξ1,2

3

ξ2
2

ξ2,1
3 ξ2,2

3

CI

CU CE

CE

CE CU

Ineffective Ineffective Effective Unknown
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Solution Approach — A Decomposition Algorithm

Outline

1 Introduction

2 Multistage Distributionally Robust Stochastic Program (DRSP)

3 Effective Scenarios in Multistage DRSP

4 Solution Approach — A Decomposition Algorithm

5 Computational Results

6 Conclusion and Future Research
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Solution Approach — A Decomposition Algorithm

Dynamic Programming Formulation

min
x1∈X1

g1(x1, ξ1) + max
p2∈P2|ξ[1]

Ep2

 min
x2∈X2

g2(x2, ξ2) + . . .+ max
pT∈PT|ξ[T−1]

EpT

[
min

xT∈XT

gT (xT , ξT )

]
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Solution Approach — A Decomposition Algorithm

Dynamic Programming Formulation

min
x1∈X1

g1(x1, ξ1) + max
p2∈P2|ξ[1]

Ep2

 min
x2∈X2

g2(x2, ξ2) + . . .+ max
pT∈PT|ξ[T−1]

EpT

[
min

xT∈XT

gT (xT , ξT )

]
︸ ︷︷ ︸

Q2(x1,ξ[2])

First-stage cost function

min
x1∈X1

g1(x1, ξ1) + max
p2∈P2|ξ[1]

Ep2

[
Q2(x1, ξ[2])

]
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Solution Approach — A Decomposition Algorithm

Dynamic Programming Formulation

min
x1∈X1

g1(x1, ξ1) + max
p2∈P2|ξ[1]

Ep2


min

x2∈X2

g2(x2, ξ2) + . . .+ max
pT∈PT|ξ[T−1]

EpT

[
min

xT∈XT

gT (xT , ξT )

]
︸ ︷︷ ︸

QT (xT−1,ξ[T ])︸ ︷︷ ︸
Q3(x2,ξ[3])


︸ ︷︷ ︸

Q2(x1,ξ[2])

First-stage cost function

min
x1∈X1

g1(x1, ξ1) + max
p2∈P2|ξ[1]

Ep2

[
Q2(x1, ξ[2])

]
stage-t cost function

Qt(xt−1, ξ[t]) := min
xt∈Xt

gt(xt , ξt) + max
pt+1∈Pt+1|ξ[t]

Ept+1

[
Qt+1(xt , ξ[t+1])

]
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Solution Approach — A Decomposition Algorithm

A Cutting Plane Approach

stage-t cost function
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xt∈Xt

gt(xt , ξt) + max
pt+1∈Pt+1|ξ[t]

Ept+1

[
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Solution Approach — A Decomposition Algorithm

A Cutting Plane Approach

stage-t cost function

Qt(xt−1, ξ[t]) = min
xt∈Xt

gt(xt , ξt) + αt

s.t. αt ≥ max
pt+1∈Pt+1|ξ[t]

Ept+1

[
Qt+1(xt , ξ[t+1])

]
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Solution Approach — A Decomposition Algorithm

A Cutting Plane Approach

stage-t cost function

Qt(xt−1, ξ[t]) = min
xt∈Xt

gt(xt , ξt) + αt

s.t. αt ≥ Ept+1

[
Qt+1(xt , ξ[t+1])

]
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A Cutting Plane Approach

stage-t cost function

Qt(xt−1, ξ[t]) = min
xt∈Xt

gt(xt , ξt) + αt

s.t. αt ≥ Ept+1

[
Qt+1(xt , ξ[t+1])

]
, pt+1 ∈ Pt+1|ξ[t]

For multistage DRSP-V,

Pt+1|ξ[t]
is a polyhedron =⇒ Finite convergence

This idea can be applied to any polyhedral ambiguity set, with finite
convergence guaranteed
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Solution Approach — A Decomposition Algorithm

How to Generate Distributional Cuts?

Distribution Separation Problem

For a fixed xt ∈ Xt , solve

max
pt+1∈Pt+1|ξ[t]

Ept+1

[
Qt+1(xt , ξ[t+1])

]
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pt+1∈Pt+1|ξ[t]

∫
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Solution Approach — A Decomposition Algorithm

How to Generate Distributional Cuts?

Distribution Separation Problem

For a fixed xt ∈ Xt , solve

max
pt+1∈Pt+1|ξ[t]

∫
Ξt+1|ξ[t]

pt+1Q̄t+1(xt , ·) dν

For multistage DRSP-V,

Pt+1|ξ[t]
is a polytope =⇒ Optimum is obtained at an extreme point

Challenge

We do not have Qt+1(xt , ξ[t+1])

But...

We can use an inner (upper) approximation Q̄t+1(xt , ξ[t+1])
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Solution Approach — A Decomposition Algorithm

Primal Decomposition Algorithm

Main Idea

Combine Nested L-shaped method and Distribution Separation
problem

Forward Pass

Obtain x = [x1, . . . , xT ]

Use inner approximations on Qt+1(xt , ξ[t+1]), t = T − 1, . . . , 1 to
obtain p = [pT , . . . , p2]

Backward Pass

Refine outer approximations on Qt+1(xt , ξ[t+1]) and
maxpt+1∈Pt+1|ξ[t]

Ept+1

[
Qt+1(xt , ξ[t+1])

]
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Computational Results

Test Problems

We considered two sets of problems:

SGPF—A Bond Investment Planning problem described by
(Frauendorfer, Marohn, and SchÄurle, 1997) to maximize profit under
uncertain returns

Water Resources Allocation—Allocate Colorado River water among
different users under water demand and supply uncertainties at
minimum cost? (Zhang, Rahimian, Bayraksan, 2016)

We implemented our primal decomposition algorithm in C++ on top of
SUTIL 0.1 (A Stochastic Programming Utility Library) (Czyzyk, Linderoth,

and Shen, 2008) and solved problems with CPLEX 12.7.
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Computational Results

SGPF3Y3 (3 Stages, 52 = 25 Scenarios)
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Computational Results

SGPF3Y6 (6 Stages, 55 = 3125 Scenarios)

# of scenario path

γ ineffective effective undetermined

0.00 0 3125 0
0.05 0 3125 0
0.10 0 3125 0
0.15 0 3125 0
0.20 994 2131 0
0.25 2101 1024 0
0.30 2101 1024 0
0.35 2101 1024 0
0.40 2745 380 0
0.45 2793 183 149
0.50 2829 214 82
0.55 2873 234 18
0.60 3076 37 12
0.65 3081 24 20
0.70 3083 24 18
0.75 3089 36 0
0.80 3116 9 0
0.85 3116 9 0
0.90 3116 9 0
0.95 3116 9 0
1.00 3116 9 0
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Computational Results

Water (4 Stages, 503 = 125× 103 Scenarios)
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Conclusion and Future Research

Conclusion and Future Research

Multistage DRSP-V is equivalent to a multistage risk-averse
optimization, with a convex combination of worst-case and
conditional value-at-risk as conditional risk mappings.

Effective scenarios can provide managerial insight into the underlying
uncertainties of the problems and encourage decision makers to
collect more accurate information surrounding them.

The notion of effective scenarios can be used for...

choosing the level of robustness
other φ-divergences and ambiguity sets
a better cut management in the primal decomposition algorithm
scenario reduction
. . .
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Conclusion and Future Research
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DRSP with Total Variation Distance (DRSP-V)

Recall...

min
x∈X

{
fγ(x) := max

p∈P

∑
ω∈Ω

p(ω)h(x , ω)

}
,

where

Pγ =

{
p :

1

2

∑
ω∈Ω

|p(ω)− q(ω)| ≤ γ,∑
ω∈Ω

p(ω) = 1,

p ≥ 0

}
.
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