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Objectives

Reduced order models to solve inverse problems

Inherent ill-posedness in classical inverse problems

Difficult to do direct inversion methods on standard discretizations
since small errors in forward models lead to large errors in inversion

Possible fix: spectrally converging reduced order forward models
(ROMs).

Approach: Find reduced order forward model that matches data
exactly, extract unknown coefficient from the ROM
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Obtaining the ROM from the data - 1d example.

Consider solving

−u′′ + q(x)u + λu = 0 for x on (0, 1)

−u′(0) = 1

u(1) = 0

Define the transfer function F (λ) := u(0).

Read data at m spectral points {F (λ),F ′(λ) : λ = b1, . . . bm} , want
to determine q
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Obtaining the ROM from the data - 1d example.

Consider the variational form for above for

V = {φ ∈ H1(0, 1)|φ(1) = 0},

Find u ∈ V such that∫ 1

0
u′φ′ +

∫ 1

0
quφ+ λ

∫ 1

0
uφ = φ(0)

for all φ ∈ V
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Obtaining the ROM from the data - 1d example.

Pretend we were to have exact solutions to above u1, . . . , um
corresponding to spectral points λ = b1, . . . bm.

We could construct the subspace

U = span{u1, . . . , um}

and find the Galerkin solution

uG ∈ U such that∫ 1

0
u′Gφ

′ +

∫ 1

0
quGφ+ λ

∫ 1

0
uGφ = φ(0) (1)

for any φ ∈ U.
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Obtaining the ROM from the data - 1d example.

Searching for the unknown coefficients {ci} for the solution

uG = Σm
i=1ciui

and by setting φ = uj we get

Mij =

∫ 1

0
uiuj

and

Sij =

∫ 1

0
u′iu
′
j +

∫ 1

0
quiuj .

the mass and stiffness matrices.
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Obtaining the ROM from the data - 1d example.

Searching for the unknown coefficients {ci} for the solution

uG = Σm
i=1ciui

Mij =

∫ 1

0
uiuj

and

Sij =

∫ 1

0
u′iu
′
j +

∫ 1

0
quiuj .

For forward solution would solve (S + λM)~c = ~F where
Fi = F (bi ) = ui (0).
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Obtaining the ROM from the data - 1d example.

Given data {F (bj),F
′(bj) : j = 1, . . . ,m},

Use (1) with u = ui and φ = uj to obtain

Sij + biMij = uj(0) = F (bj) for all i , j = 1, . . . ,m. (2)

By reversing i and j and subtracting, for i 6= j we have

(bi − bj)Mij = F (bj)− F (bi )

or

Mij =
F (bj)− F (bi )

bi − bj
(3)
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Obtaining the ROM from the data - 1d example.

Taking spectral point z → bi , we obtain

Mii = −F ′(bi ). (4)

Multiplying (2) by bj , reversing i and j and subtracting, we get

(bj − bi )Sij = bjF (bj)− biF (bi )

or

Sij =
bjF (bj)− biF (bi )

bj − bi
(5)
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Obtaining the ROM from the data - 1d example.

and taking spectral point z → bi ,

Sii = (λF )′(bi ). (6)

These formulas are well known in the model reduction community.

The Galerkin model of small size m, S ,M is obtained directly from
the data.

This Galerkin discretization of the pde has solutions which match the
data exactly.
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Galerkin solution matches data

That is, for the above described Galerkin solution uG , we that have

uG (0) = Fm(λ)

where Fm(λ) is the unique rational Hermite interpolant to the
transfer function F (λ) at the points b1, . . . , bm of the form

Fm(λ) =
m∑
i=1

yi
λ− θi

.

Similar results hold for other forms of spectral data.
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Galerkin solution matches data

To see this:

For m dimensional test/trial space, eigendecomposition shows
Galerkin solution at x = 0 must be of that rational form

uG (0) =
m∑
i=1

yi
λ− θi

=: Fm(λ)

for some positive residues and negative poles.

Since exact solutions for λ = bi are in the trial space, solution must
be exact there, i.e.

Fm(bi ) = F (bi )

for i = 1, . . . ,m.
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Galerkin solution matches data

Using that the exact solutions are also in the test space, the
variational formulation for λ near bi and taking limits we get that

F ′m(bi ) = F ′(bi ).

The derivatives of F are matched as well as the values. (2m data
points)

Uniqueness follows from uniqueness of the Hermite Padé interpolant
to F (λ).
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START OVER. Original idea of spectrally matched grids.

(Druskin, Kniznerman)

Given the same 1-d, one receiver pde above.

− u′′ + qu + λu = 0 on (0, 1) (7)

−u′(0) = 1

u(1) = 0

Rational approximation of the transfer function

F (λ) := u(0)

→ three point finite difference stencil which matches data

Yields special nonuniform grid and spectral convergence at the
receiver.
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Original idea of spectrally matched grids

So, given data F (bi ),F
′(bi ) for m positive spectral points

λ = b1, . . . bm.

One can generate the unique rational approximation Fm(λ) to F (λ)
of the form

Fm(λ) =
m∑
i=1

yi
λ− θi

with positive residues and negative poles which interpolates this data.

There is then a unique three-point staggered difference scheme with
tridiagonal matrix Lm for which the approximated data/solution at
x = 0 is exactly Fm(λ).
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Original idea of spectrally matched grids

That is, the rational approximation Fm(λ) uniquely determines
positive γj , γ̂j , such that solving the finite difference scheme

− 1

γ̂j

(
Uj+1 − Uj

γj
−

Uj − Uj−1

γj−1

)
+ λUj = 0 for j = 1, . . .N(8)

−U1 − U0

γ0
= 1

UN+1 = 0

yields
U1 = Fm(λ)

View γj as primary step size and γ̂j as dual grid step size. For
example for q = 0 ,these are straightforward grid steps.
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ROMs as forward models compared

So the spectrally matched grid and Galerkin solutions have exactly
the same response at x = 0.

Galerkin solution converges high order everywhere on the domain but
system is full

Spectrally matched grid has high order convergence only at x = 0 and
system is tridiagonal.
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A one-dimensional model: How to use this for inversion ?

(Borcea, Druskin ) For Sturm-Liouville

Compute above or similar reduced order finite difference model from
data.

Use the spectrally matched grid (or reduced order model) for
reference media to extract unknown coefficient

They proved that the grid depends only very weakly on the medium in
the high frequency limit.
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Inversion in higher dimensions.

(Borcea, Druskin, Guevara-Vasquez, Mamanov, Zaslavsky) Use other
new techniques to extend to 2-d

New methods require better understanding of reduced order model-
how to generalize grid?
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Equivalence of grids with Galerkin

Consider again solving

−u′′ + qu + λu = 0 on (0, 1)

−u′(0) = 1 u(1) = 0

with Galerkin subspace U = span{u1(x), u2(x), . . . , un(x)}, for {ui}
the solutions at those same spectral data points λ = bi .

Galerkin system is
(S + λM)~c = ~F (9)

to solve for ~c = (c1, . . . cn)

coefficients for solution

uG =
∑

ciui .

S and M are full, unlike the finite difference

Find a new basis in which the Galerkin system is sparse?
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Equivalence of grids with Galerkin

Define δU ∈ U to be the unique element of U which satisfies

〈δU ,w〉 = w(0) for all w ∈ U,

identified with the vector ~δ = (d1, d2, . . . dn)

Let A = M−1S

Consider now the basis where we let

B = {~δ,A~δ,A2~δ, . . . ,Am−1~δ}.

Orthogonalize it with Gram-Schmidt with respect to M inner product
(yields L2 orthonormality)
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Equivalence of grids with Galerkin

Get new orthogonalized basis for U:

U = span{û1(x), û2(x), . . . ûn(x)}.

Now redo Galerkin system in this new basis.
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A one-dimensional model: Galerkin equivalence

Mass M̂ matrix will be identity due to orthogonality.

Stiffness matrix Ŝ will be tri-diagonal due to Lanczos process

Right hand side will be nonzero only in first component (an
approximate delta)

The only difference is that the Galerkin stiffness matrix Ŝ is
symmetric while the system (11) is symmetric with respect to the γ̂i
diagonal inner product.
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A one-dimensional model: Galerkin equivalence

Theorem

If one uses the orthogonalized basis above and forms the Galerkin system

(Ŝ + λM̂)~̂c =
~̂
F (10)

to solve for ~̂c, this is precisely the symmetrization of the finite difference
system (11) for ~U. More precisely,

uG =
m∑
i=1

√
γ̂iUi ûi (x).
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A one-dimensional model: Galerkin equivalence

That is, the solution components Uj of this difference scheme

− 1

γ̂j

(
Uj+1 − Uj

γj
−

Uj − Uj−1

γj−1

)
+ λUj = 0 for j = 1, . . .N(11)

−U1 − U0

γ0
= 1

UN+1 = 0

can be interpreted as coefficients (with a scaling) of the Galerkin
solution in this orthonormal basis.
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A one-dimensional model: Galerkin equivalence

Figure: Spectrally matched finite difference grid with its equivalent Galerkin basis
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A one-dimensional model: Inversion

So the entries of this reduced order model (which can be obtained
from the data) are the entries of the stiffness matrix

Ŝij =

∫
û′i û
′
j +

∫ 1

0
qûi ûj

and the mass matrix

M̂ij =

∫
ûi ûj .

The orthogonalized basis functions here actually depend only very
weakly on the coefficient .
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qûi ûj
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Inversion

Idea ( from time domain papers of Borcea, Druskin, Mamonov,
Zaslavsky): Since these appropriately orthogonalized basis functions
depend only weakly on q we can use similarly orthogonalized basis
functions for some known reference medium.

The orthogonalized basis functions for the reference medium play the
role of the optimal grid for coefficient extraction.

Unlike the grid, localized basis functions have a natural extension to
higher dimensions and other geometries.
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A one-dimensional example: Inversion

Consider

− u′′ + q(x)u + λu = 0 on (0, 1) (12)

−u′(0) = 1

u(1) = 0

as a perturbation of the corresponding reference problem q0 = 0

− u′′ + λu = 0 on (0, 1) (13)

−u′(0) = 1

u(1) = 0
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A one-dimensional example: Inversion

We read data F (bi ), F ′(bi ) for λ = b1, . . . bm for the perturbed
problem.

From this generate the m ×m stiffness and mass matrices S , M for
Galerkin system for basis of exact solutions.

Perform Lanczos orthogonalization to generate Galerkin system Ŝ , M̂
for orthogonalized basis
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Weak dependence of orthogonalized bases on q
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Weak dependence of orthogonalized bases on q
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A one-dimensional example: Inversion

From the data, we have a Galerkin system (low dimensional reduced
order model) for the internal solution for any spectral value.

From the reference medium, we have a highly accurate approximation
to the orthogonalized basis.

By solving the Galerkin system, we get the coefficients

This yields boundary data generated internal solutions
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Internal solution

Internal solution for arbitrarily chosen spectral value λ = 3 generated from
data.
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Internal solution

Internal solution for arbitrarily chosen spectral value λ = 3 generated from
data.
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A one-dimensional example: Inversion

How to use internal solution to do inversion?

For example, can compute (u′′ − λu)/u ≈ q

Can do this for any spectral value.
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A one-dimensional example: Inversion
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A one-dimensional example: Inversion

A harder example
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Inversion possibilities for higher dimensions

For higher dimensional problems, we can use multiple k
sources/receivers:

−∆uri + q(x)uri + biu
r
i = 0 in Ω (14)

∂uri
∂ν

= gr on ∂Ω

”source” (Neumann data) gr and spectral value bi

Now spectral data is in the form of a k × k block

F i
rl := Frl(bi ) =

∫
∂Ω

uri gl

and

DF i
rl :=

dFrl
dλ

(λ)|λ=bi
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Inversion possibilities for higher dimensions

Galerkin system generation with basis of exact solutions

Sirjl + biMirjl = F j
lr

is again obtained directly from boundary data :

Mirjl =
F j
lr − F i

lr

bi − bj
, (15)

Miril = −DF i
lr , (16)

Sirjl =
bjF

j
lr − biF

i
lr

bj − bi
, (17)

and
Siril = (λFrl)

′(bi ). (18)
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Inversion possibilities for higher dimensions

Orthogonalize with block Lanczos with k × k blocks

No finite difference representation anymore, but localized basis
functions should provide geometric interpretation of system entries.

After orthonormalization, basis functions close to those from reference
medium.

Again reference basis functions combined with reduced order model
will yield internal data for any chosen λ.

Try again (∆u − λu)/u ≈ q.
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proof of concept 2d, two sources/receivers
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bump profile, four sources on one side
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reconstruction using data generated internal solutions ,
four sources on one side
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double bump profile , eight sources around
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Figure: Relative error between the true and data generated: 0.003930. Relative
difference between the true and reference medium: 0.084794.
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Figure: Reconstruction of two bumps . Eight sources total; two on each side, and
six spectral values.
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Conclusions

Can use spectral data to directly generate Galerkin reduced order
model as was done before in time domain

In 1-d, after orthogonalization, this is equivalent to a spectrally
matched finite difference grid

Lanczos orthogonalization yields a new basis which is close to that
from reference medium.

Can use the reference medium basis and data generated ROM to
obtain approximations of internal solutions from data

(∆u − λu)/u ≈ q can yield reconstructions directly

Other approaches to use the ROM, reference basis functions, and
optimization improve accuracy of reconstructions (current work)
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