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Inverse problem and motivation



Problem formulation

Direct problem
For a fixed inclusion w C Q, introduce K, (x) = Kout + (Kin — Kout) Xw
with Kj, << Koyt and define y as the solution of

—div(K,Vy) + Xowy’ = f in Q
KoutOyy =0 on 0f
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Inverse problem
Given a boundary measurement y,e.s on 052, find the inclusion w such
that the solution y of the direct problem satisfies y|so = Ymeas-



The direct problem is a simplified version of the monodomain model for
the electrical activity of the heart:

e y: transmembrane potential;

e K: conductivity coefficient;

e non-linear constitutive law for ionic current: lion(y) = y3;
e f is an external source of current.
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The direct problem is a simplified version of the monodomain model for
the electrical activity of the heart:

e y: transmembrane potential;

e K: conductivity coefficient;

e non-linear constitutive law for ionic current: lion(y) = y3;
e f is an external source of current.

The inclusion w models the presence of an
ischemia: a region in the tissue not

properly supplied with blood, where electric
properties of the cell membrane are altered

Long-term purpose

Identify the presence of ischemic regions from non invasive electrical
measurements.



Phase-field approach and
Reconstruction algorithm



Arbitrary inclusions

Assume w of arbitrary shape.
w C Q is a finite-perimeter set, i.e. u= x, € BV(Q)

Rewrite the problem in terms of u

Forward problem

/Qa(u)VyV<p+/Qb(u)y330:/Qf</%
being a(u) =1— (1 —k)uand b(u) =1—-u (k<<1).

Define the solution map S : Xp1 — H(Q), S(u) =y, where
Xo1={veBV:ve{0,1},v=0ae €Q®}

where Q% = {x € Q: d(x,0Q) < do}



Constrained minimization problem

Inverse problem

Find u e X071 S.t. S(U)laQ = Ymeas
Goal: minimize the mismatch with the data

in J
g ),



Constrained minimization problem

Inverse problem

Find u e X071 S.t. S(U)laQ = Ymeas
Goal: minimize the mismatch with the data

in J
g ),

The problem is ill-posed!



Tikhonov regularization

Tikhonov regularization of the functional via the Total Variation term:

1

T () ) — 7/ (S(4) = Yrmes)? + TV (1),
u€Xo 1 2 Joq

where

TV(u)—sup{ [ wso o€ iR, [0l s1}.



Relaxation

Phase-field relaxation (cf. [Deckelnick, Elliott, Styles '16]): Let
K={veHQ): 0<v<lae inQ v=0ae in Q%}
and, for every € > 0 (& ~ thickness of diffuse interface separating two

sets on which the conductivity coefficient is constant), introduce the
relaxed optimization problem:

arg min J-(u);
uelkl

1 ' 1
J=(u) :EHS(U) - }/meas”iZ(aQ) + OZ/Q (EVU|2 < gu(l = u)),

where the solution map S : K — H(Q2), S(u) =y, and y solves

Forward problem

[ atvyve [ suye= [ fo
being a(u) =1 — (1 — k)u and b(u) =1 — u.



Relaxation

Results:
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Results:

Existence

Ve > 0 there exists a minimizer of J. in K.



Relaxation

Results:

Existence
Ve > 0 there exists a minimizer of J. in K.

Stability

2
Fix o, e > 0. Let {y¥} C L?(0Q) such that y* LOD, s and let uk

. . H!
be a solution with data yk. Then, up to a subsequence, ué‘ — Ug,

where u. is a solution with data yeas.



Optimality conditions

Optimality conditions of the phase-field problem
A minimizer u. of J. satisfies the variational inequality:
Jl(u)[v—u] >0 Vv € K;
L)) = /(1—k)19VS(u)~Vp+/ 195(u)3p+2a6/ ViV + 9/(1—2[1)19,
Q Q Q € Ja
where p is the solution of the adjoint problem:

/a(u)Vp-Vz/JJr/3b(u)5(u)2p1/)=/ (S(U) — ymess)®  Vab € HL(Q).
Q Q N
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Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):
Find u(-,t) € K, t > 0s.t. u(-,0) = up and

/QOtu(-, t) (v —u(-,t)) + J(u(-, t)[v—u(-,t)] >0 Vv ekl

11
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Formally: take v = u(-, t — At), divide by At and let At — 0:

. d
luel® + S (u)[u] <0, ie. —J(u( 1) <0.

~+ Cost functional decreases along the evolution
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Reconstruction Algorithm

Introduce the Parabolic Obstacle Problem (POP):
Find u(-,t) € K, t > 0s.t. u(-,0) = up and

/QOtu(-, t) (v —u(-,t)) + J(u(-, t)[v—u(-,t)] >0 Vv ekl

Formally: take v = u(-, t — At), divide by At and let At — 0:

. d
luel® + S (u)[u] <0, ie. —J(u( 1) <0.

~+ Cost functional decreases along the evolution

We expect stationary solution u., (if it exists!) to satisfy the optimality
condition

Goal: discretize POP to obtain discrete Reconstruction Algorithm

11



Discrete direct problem

Let 7, be a shape regular triangulation of Q and define V), C HI(Q):
Vh:{VhE C(Q), Vth E]P)l(K) VKEIF,}, Kn=V,NnK.

For every fixed h > 0, we define the (well-posed) discrete solution map
Sp i K — V4, where Sp(u) solves

/Qa(u)vsh(u)wh+/Qb(u)5h(u)3vh:/vah Y € Vi

12



Discrete direct problem

Let 7, be a shape regular triangulation of Q and define V}, C H}(Q):

Vh:{VhE C(Q),Vth E]Pl(K) VKEIF,}, Kn=V,NnK.
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Convergence |

Let f € L2(Q). Then, for every u € K, Sp(u) — S(u) strongly in
HY(Q).
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Discrete direct problem

Let 75 be a shape regular triangulation of Q and define V}, ¢ H*(Q):
Vh:{VhE C(Q),VthE]Pl(K) VKE%}; Kn=V,NnK.

For every fixed h > 0, we define the (well-posed) discrete solution map
Sp i K — V4, where Sp(u) solves

/Qa(u)vsh(u)wh+/Qb(u)5h(u)3vh:/vah Yy € Vi,

Convergence |

Let f € L2(Q). Then, for every u € K, Sp(u) — S(u) strongly in
HY(Q).

Convergence |l

Let {hx}, {ux} be two sequences such that hy — 0, ux € Kp, and
Uk L e K. Then Sh, (uk) H, S(u).

12



Discrete optimization problem

Define the discrete cost functional, J. , : K — R

1 1
Je,h(uh) = EHSh(Uh) - )/meas.,h”iZ(aQ) + CV/Q <5|vuh|2 -+ gUh(l = Uh)>

Ymeas,n is the L?(Q)-projection of the boundary datum yineas in the space
of the traces of V}, functions.
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Discrete optimization problem

Define the discrete cost functional, J. , : K — R

1 1
Jg,h(uh) = EHSh(Uh) - )/meas.,h”iZ(aQ) + CY/Q <E|VUh|2 + gUh(l = Uh)>

Ymeas,h IS the L?(2)-projection of the boundary datum ypess in the space
of the traces of V}, functions.

Existence of minimizers
For each h > 0, there exists u, € K, such that

up = argminy,cic, Je.n(Vh).
Every sequence {up, } s.t. limg_o0 hx = 0 admits a subsequence that

converges in H!(€) to a minimum of the cost functional J..

13



Discrete optimality condition

up € KCp - J;h(uh)[vh — uh] >0 Vv, ey

14



Discrete optimality condition

up € KCp - J;h(uh)[vh — uh] >0 Vv, ey

where

JL p(un)[04) :/(1 — K)OnV Sh(up) - Vpn +/Qi9h5h(uh)3ph + 2@E/QVU;, -V
Q

+g/(1*2uh)79h7
e Ja

with pj finite element solution of discrete adjoint problem
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Discrete optimality condition

up € KCp - J;h(uh)[vh — uh] >0 Vv, ey

where
Iz (un)[9n] :/Q(l — k)UnV Sp(un) - Vpn +/Qi9h5h(uh)3ph + 2@E/QVUh - Vi
+= / (1 — 2up)Vp,
€ JQ
with pj finite element solution of discrete adjoint problem
Convergence to continuous optimality condition
Let {hx} s.t. hx — 0 and wuy corresp. solution of the discrete variational

inequality. Then there exists a subsequence of {ux} that converges a.e.
and in H(Q) to a solution u of the continuous optimality condition.

14



Discrete Reconstruction Algorithm

Continuous parabolic obstacle problem (POP):

{/S;Btu(-, t)(v —u(-,t)) + Jé(u(-, t)[v—u(-,t)] >0 Vv e K, te(0,+00)

u(+,0) = up an initial guess in IC

15



Discrete Reconstruction Algorithm

Continuous parabolic obstacle problem (POP):
/ Bru(s, t)(v — u(-, t)) + J(u(-, t)[v — u(-,t)] >0 Vv e K, te(0,+00)
Q
u(-,0) = up an initial guess in IC
Time discretization via a semi-implicit scheme:

ud = up € Ky (a prescribed initial datum)
+1 EIC;, / (Ut — up)(ve — uh“)—l-/(l—k YV Sh(up) - Vpp(vi — up™t)

+ / Sh(u2)3p;’(vh7ug+1)+2as/ VUt v (v, — urt)
JQ JQ

17
+a—/(1—2uﬂ h—ug+1)>0 Vv, € Ky, n=0,1,...
e Ja
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Discrete Reconstruction Algorithm

Time discretization via a semi-implicit scheme:

ud = up € Kp (a prescribed initial datum)
”H & lCh / m—uny(ve — uth) + / (1 — K)VSh(up) - Vpi (v — up™)

+/Sh(uﬂ)3pg(vh—u;'+1)+2ae/ Vurtl . Y (v, — urth)
JQ JQ

1

+a—/(172u,’,' vhfug+1)>0 Vv, € Kp, n=0,1,...
e Ja

Discrete Reconstruction algorithm

e Set n=0 and u? = up, the initial guess for the inclusion;

o while ||uf — up~? > tol

1. compute S(up) solving the discrete direct problem;

2. compute pp solving the discrete adjoint problem;

3. update u;’“ according to the discrete POP (e.g. via Primal-Dual
Active Set algorithm);

4. update n=n-+1; 15



Properties of the discrete reconstruction algorithm

Discrete Energy dicrease
For each n > 0, there exists a positive constant 5, such that, if
7, < B, it holds:
1 2 1
Hu,’fr — u;,’HL2 + szh(u,'fr ) < Jen(up) n> 0.

Ba = Ba(, bk, 15 s 158 s 1Y)

16



Properties of the discrete reconstruction algorithm

Discrete Energy dicrease
For each n > 0, there exists a positive constant 5, such that, if
7, < B, it holds:

|t — uf||, + Jep(ufh) < dop(ul)  n>0.

Ba = Ba(, bk, 15 s 158 s 1Y)

Convergence to discrete optimality conditions

There exist timesteps {7,} s.t. the sequence {u}} has a converging
subsequence to uy, satisfying the discrete optimality condition.

16



Numerical results




Numerical results

e=1/(8n), h=10.04, 7 =0.01/e, a = 1073, k = 1072
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(a) Circular inclusion; 587 iterations
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(b) Elliptical inclusion; 1497 iterations
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Numerical results

1 1 1
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(a) Rectangular inclusion; 1272 iterations (b) Two inclusions; 4670 iterations
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Numerical results - asymptotics

Asymptotics as € — 0
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(@) e =2: Nt =358 (b) e = &= Niot =1500  (c) £ = 10—: Niot = 3514
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Numerical results - robustness

Initial guess
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(a) Arbitrary; 661 iterations (b) Sublevel of the topological gradient of

J; 489 iterations
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Extra: reconstruction from noisy data

Different noise level, o = 103
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(a) Noise level: 1%; 430 (b) Noise level: 5%; 560
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(c) Noise level: 10%; 1120
iterations
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Extra: reconstruction from noisy data

Different regularization parameters, noiselevel = 10%
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(a) a = 1073; 1120 iterations(b) o = 3 - 10~3; 751
iterations
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(c) a=5-10"3; 462
iterations
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Shape Derivative approach: numerical results

Comparison with the shape gradient

1

0.6

(a) Shape gradient algorithm
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e , mesh adaptation

(b) Phase field, ¢ = 3¢~
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Conclusions and further developments

e We presented a phase field based algorithm to reconstruct inclusions
in semilinear elliptic problem.

e We introduced discrete reconstruction algorithm and discussed
convergence properties.

e Numerical tests show efficacy of the approach.

21



Conclusions and further developments

e Consider reconstrucion problem governed by Monodomain model ~~
system of a parabolic semilinear equation coupled with nonlinear

ODE)
Otu—V - (MVu)+ f(u,w) =0 in Q2 x(0,T),
Mo,u =0 on 9Q x (0, T),
ule=o = uo in Q,
Orw + g(u,w) =0 in Q2 x (0, T),
Wlt=0 = wo in Q.

Challenge: reduce computational cost of the iterative reconstruction
algorithm (each iteration requires solution of two parabolic eqns) ~~
a posteriori error estimates to control time and space discretization

1

e Time step adaptivity for direct
U problem (M = 1)

R ~~ cf. Luca Ratti’s poster

Timestep lenght

22
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Constrained minimization problem

Inverse problem
Find u e XO,l SLit S(U)lan = Ymeas
Goal: minimize the mismatch with the data
in J
2, )
1 2
J(u) = 5 (S(u) - )/meas)
o0

Continuity of the forward operator: F : u € Xo1 — S(u)|aq € L2(0R)

Lt L2(09)
If {un} C Xo1 s.t. up — u € Xo1, then S(up)log — S(u)|oq.

Issue: F is a compact operator = The problem is ill-posed: lack of
stability

24



Convergence
Consider {ex} s.t. ex — 0. Then, J., converge to J.g in the sense of
the —convergence with respect to the L! norm.

S L
As a consequence, the minimizers {u., } C K of J., are s.t. u.,, — u,

u € Xo,1 minimizer of J.og.

25
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