Title, Speaker

New results on a variational inequality formulation of Lavrentiev regularization for nonlinear monotone ill-posed problems

Robert Plato, University of Siegen Joint work with Bernd Hofmann (Chemnitz), see JOTA (2019).

Variational Lavrentiev regularization for nonlinear monotone problems

Table of Contents

- 1. Variational Lavrentiev regularization: Preparations, basics
- 2. Some new convergence rates
- Variational Lavrentiev regularization with initial guess
- Numerical results
- Conclusions

1. Variational Lavrentiev regularization

1.1 Preparations

Definition

Let $\mathcal H$ Hilbert space, $F:\mathcal H\to\mathcal H$ nonlinear, in general. The operator F is *monotone* on a set $\mathcal M\subseteq\mathcal H$, if

$$\langle\!\langle Fu - Fv, u - v \rangle\!\rangle \ge 0$$
 for each $u, v \in \mathcal{M}$.

Example

Consider classical integration and the Abel operators (both linear!)

$$(Vu)(x) = \int_0^x u(y) dy,$$

$$(V^{\alpha}u)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-y)^{-(1-\alpha)} u(y) dy \quad (0 < \alpha < 1)$$

for $0 \le x \le 1$. Both are monotone on $\mathcal{H} = L^2(0,1)$.

4 D > 4 A D > 4 B > 4 B > B = 900 P

Consider operator $F: L^2(0,1) \to L^2(0,1)$ given by Fu = f, where

$$f'(x) + u(x)f(x) = 0, \ 0 \le x \le 1, \quad f(0) = -c_0,$$

with $c_0>0$ given. F is monotone on $\mathcal{M}=\left\{\,u\in L^2(0,1)\mid u\geq 0\,\right\}$.

Example (Autoconvolution)

Consider $F: L^2(0,1) \rightarrow L^2(0,1)$ given by

$$(Fu)(x) = \int_0^x u(x-y)u(y)dy, \quad 0 \le x \le 1.$$

F is monotone on

1. Lavrentiev regularization

$$\mathcal{M} = \{ u \in L^2(0,1) \mid u', u'' \in L^2(0,1), u \ge 0, u' \le 0, u'' \ge 0 \}.$$

Assumptions

Let

000000

- \mathcal{H} Hilbert space, $\mathcal{M} \subseteq \mathcal{H}$ closed convex.
- $F: \mathcal{H} \to \mathcal{H}$ monotone on $\mathcal{M} \subseteq \mathcal{H}$, i.e.,

$$\langle\!\langle Fu - Fv, u - v \rangle\!\rangle \ge 0$$
 for each $u, v \in \mathcal{M}$.

- $u_* \in \mathcal{M}$, $f \in \mathcal{H}$, $Fu_* = f$, $f^{\delta} \in \mathcal{H}$, $||f^{\delta} f|| \leq \delta$.
- In general, F^{-1} not continuous at f.
- Determine u_* .

Classical Lavrentiev regularization

Consider for $0 < \gamma = \text{regularization parameter}$

$$(F + \gamma I)u_{\gamma}^{\delta} = f^{\delta}$$

with $u_{\gamma}^{\delta} \in \mathcal{M}$.

Remark

Recall Tikhonov regularization for linear case:

$$(A^*A + \gamma I)u_{\gamma}^{\delta} = A^*f^{\delta},$$

where $A: \mathcal{H}_1 \to \mathcal{H}_2$ linear, bounded, with $\mathcal{H}_1, \mathcal{H}_2$ Hilbert spaces.

Thus: Lavrentiev regularization = Tikhonov regularization without normalization in linear case.

Remark

Note that equation $(F + \gamma I)u_{\gamma}^{\delta} = f^{\delta}$ is solvable on \mathcal{M} in special cases only, e.g.,

- $\mathcal{M} = \mathcal{H}$, and F continuous, or
- M = closed ball of sufficiently large radius.

In applications, frequently $\mathcal{H}=L^2(0,1), \mathcal{M}=\{u\in L^2(0,1)\mid u\geq 1\}$ 0 }, however.

Notation

For $F: \mathcal{H} \to \mathcal{H}$ we use the notation

$$F_{\gamma} = F + \gamma I : \mathcal{H} \to \mathcal{H} \text{ for } \gamma > 0.$$

For
$$\gamma=$$
 regularization parameter $>$ 0, determine $u_{\gamma}^{\delta}\in\mathcal{M}$ with

$$\langle\!\langle F_{\gamma} u_{\gamma}^{\delta} - f^{\delta}, u - u_{\gamma}^{\delta} \rangle\!\rangle \ge 0$$
 for each $u \in \mathcal{M}$. (RVI)

Proposition

1. Lavrentiev regularization

00000

Let
$$\mathcal{P}_{\mathcal{M}} =$$
 metric projection onto $\mathcal{M}, u_{\gamma}^{\delta} \in \mathcal{M}$. Then: u_{γ}^{δ} solves RVI $\iff u_{\gamma}^{\delta} = \mathcal{P}_{\mathcal{M}}(u_{\gamma}^{\delta} - \mu(F_{\gamma}u_{\gamma}^{\delta} - f^{\delta}))$ with $\mu > 0$.

Theorem

If $F: \mathcal{H} \to \mathcal{H}$ continuous + bounded then RVI has a (unique) solution $u_{\gamma}^{\delta} \in \mathcal{M}$.

Some new convergence rates

Trajectory in \mathcal{H} ; semiconvergence

Variational Lavrentiev regularization $\rightsquigarrow \{u_{\gamma}^{\delta}\}_{\gamma>0} \subset \mathcal{H}$

$$\|u_{\gamma}^{\delta} - u_*\| \le \|u_{\gamma} - u_*\| + \frac{\delta}{\gamma} \quad \text{for } \ \gamma > 0.$$

Proof

Simple decomposition:

$$||u_{\gamma}^{\delta} - u_{*}|| \leq ||u_{\gamma} - u_{*}|| + ||u_{\gamma}^{\delta} - u_{\gamma}||,$$

$$||u_{\gamma}^{\delta} - u_{\gamma}|| \leq \frac{\delta}{\gamma}.$$

So $e_{\gamma} = u_{\gamma} - u_{*}$ has to be estimated!

Note: For Tikhonov method, estimation of $\|u_{\gamma}^{\delta} - u_{\gamma}\|$ possible under additional smoothness of solution, see Scherzer (1993).

Convergence:

Theorem

Let F be continuous and $u_* = \min \min$ norm solution of (nonregularized) VI. Then:

(a)
$$e_{\gamma}=u_{\gamma}-u_{*}
ightarrow 0$$
 as $\gamma
ightarrow 0$,

(a)
$$e_{\gamma}=u_{\gamma}-u_* \to 0$$
 as $\gamma \to 0$,
(b) $e_{\gamma}^{\delta}=u_{\gamma}^{\delta}-u_* \to 0$ as $\gamma_{\delta} \to 0, \frac{\delta}{\gamma_{\delta}} \to 0$.

Alber, Ryazantseva, Khan, Tichatschke, Tammer, Gwinner,

Definition

An operator $F:\mathcal{H}\to\mathcal{H}$ is *cocoercive* on a subset $\mathcal{M}\subseteq\mathcal{H}$ if, for some $\tau>0$,

$$\langle Fu - Fv, u - v \rangle \geq \tau ||Fu - Fv||^2$$
 for each $u, v \in \mathcal{M}$.

Example (ODE parameter estimation revisited

Consider again $F: L^2(0,1) \rightarrow L^2(0,1)$ given by Fu = f, where f'(x) + u(x)f(x) = 0, $0 \le x \le 1$, $f(0) = -c_0$,

with $c_0 > 0$ given. For any $\theta > 0$, the operator F is cocoercive on $\mathcal{M} = \{ u \in L^2(0,1) \mid u \geq \theta \}$.

Remark

- 1. Obviously, cocoercive \Longrightarrow monotone
- 2. Baillon–Hadard theorem: Assume \mathcal{M} open, and F has potential. Then F Lipschitz continuous $\Longrightarrow F$ cocoercive.

11/20

Suppose that

1. Lavrentiev regularization

- F is cocoercive on \mathcal{M} .
- F is Fréchet differentiable on \mathcal{H} , with

$$\|F'(u)-F'(v)\|\leq L\|u-v\|\quad\text{for each}\ u,v\in\mathcal{M},$$

with some L > 0,

• $u_* = F'(u_*)^*z$ for some $z \in \mathcal{H}$, with ||z|| small enough.

Then

$$\|e_{\gamma}\| = \mathcal{O}(\gamma^{1/2}), \qquad \|F(u_{\gamma}) - f\| = \mathcal{O}(\gamma) \quad \text{as} \quad \gamma \to 0.$$

Corollary

Under the conditions of the theorem we have, with $\gamma_{\delta} = c\delta^{2/3}$,

$$||u_{\gamma}^{\delta} - u|| = \mathcal{O}(\delta^{1/3})$$
 as $\delta \to 0$.

4 D > 4 B > 4 B > 4 B >

Remark

- 1. Parts of proof of Theorem are similar to related results in Scherzer/Engl/Kunisch (1993) on Tikhonov regularization.
- 2. Liu/Nashed (1998) for RVI: $||e_{\gamma}|| = \mathcal{O}(\gamma^{1/3})$ only (under more general assumptions, however, eg., possible set perturbations).
- Adjoint source condition not well suited for Lavrentiev regularazation. For linear problems, see Plato/Hofmann/Mathé (2018).
- 4. Results improvable in linear case under standard source conditions.
- 5. Similar rates for classical Lavrentiev regularization: Hofmann/Kaltenbacher/Resmerita (2016).

3 Variational Lavrentiev regularization with initial guess

Method

1. Lavrentiev regularization

Let initial guess $\overline{u} \in \mathcal{H}$ be fixed. For $\gamma > 0$, determine $u_{\gamma}^{\delta} \in \mathcal{M}$ with

$$\langle\!\!\langle F u_\gamma^\delta + \alpha (u_\gamma^\delta - \overline{u}) - f^\delta, u - u_\gamma^\delta \rangle\!\!\rangle \geq 0 \quad \text{for each} \quad u \in \mathcal{M}. \tag{*}$$

Let $u_{\gamma} = u_{\gamma}^{0}$ be obtained by (*), with exact data $f^{\delta} = f$.

Theorem

Let F be cocoercive on \mathcal{M} , and F' be Lipschitz continuous on \mathcal{M} . lf

$$u_* \in \mathcal{M}, \quad Fu_* = f, \quad u_* - \overline{u} = F'(u_*)^* z, \quad \rho := ||z||,$$

holds for some $z \in \mathcal{H}$ and $\rho L < 2$, then

$$\|u_\gamma-u_*\|=\mathcal{O}(\gamma^{1/2}) \text{ as } \gamma\to 0, \quad \|u_{\gamma_\delta}^\delta-u_*\|=\mathcal{O}(\delta^{1/3}) \text{ as } \delta\to 0,$$

for any a priori parameter choice $\gamma_{\delta} \sim \delta^{2/3}$.

4 Numerical results

ODE parameter estimation revisited

Consider again $F: L^2(0,1) \to L^2(0,1)$ given by Fu = f, where

$$f'(x) + u(x)f(x) = 0, \ 0 \le x \le 1, \quad f(0) = -1,$$

This means

$$(Fu)(x) = -\exp\left(-\int_0^x u(y) \, dy\right), \quad 0 \le x \le 1. \tag{1}$$

For any $\theta > 0$, the operator F is cocoercive on $\mathcal{M} = \{ u \in L^2(0,1) \mid$ $u \geq \theta$ $\}$.

Example 1

Consider first Fu = f, with

$$f(x) = -\exp(-\frac{a}{2}x^2 - bx)$$
 for $0 \le x \le 1$,

with $a = b = \frac{1}{2}$. Exact solution:

$$u_*(x) = ax + b$$
 for $0 \le x \le 1$.

Note that $u_* > b$.

The modified adjoint source condition is satisfied for initial guess

$$\overline{u}\equiv u_*(1).$$

Consider modified variational Lavrentiev with initial guess \overline{u} and parameter $\gamma_{\delta} = \delta^{2/3}$.

Numerical results for Example 1:

δ	$100 \cdot \delta / \ f\ $	$\ u_{\gamma_{\delta}}^{\delta}-u_{*}\ $	$\ u_{\gamma_{\delta}}^{\delta}-u_{*}\ /\delta^{1/3}$
$1.0 \cdot 10^{-2}$	$1.33 \cdot 10^{0}$	$9.87 \cdot 10^{-2}$	0.46
$ 5.0 \cdot 10^{-3}$	$6.66 \cdot 10^{-1}$	$8.23 \cdot 10^{-2}$	0.48
$ 2.5 \cdot 10^{-3}$	$3.33 \cdot 10^{-1}$	$6.72 \cdot 10^{-2}$	0.50
$1.2 \cdot 10^{-3}$	$1.67 \cdot 10^{-1}$	$5.42 \cdot 10^{-2}$	0.50
$ 6.2 \cdot 10^{-4}$	$8.33 \cdot 10^{-2}$	$4.17 \cdot 10^{-2}$	0.49
$ 3.1 \cdot 10^{-4}$	$4.16 \cdot 10^{-2}$	$3.26 \cdot 10^{-2}$	0.48
$ 1.6 \cdot 10^{-4}$	$2.08 \cdot 10^{-2}$	$3.26 \cdot 10^{-2}$	0.61
$ 7.8 \cdot 10^{-5}$	$1.04 \cdot 10^{-2}$	$2.72 \cdot 10^{-2}$	0.64
$3.9 \cdot 10^{-5}$	$5.21 \cdot 10^{-3}$	$2.53 \cdot 10^{-2}$	0.75

Table: Numerical results for first example

Example 2

Now consider Fu = f, with

$$f(x) = -\exp(\frac{a}{\pi}(\cos \pi x - 1) - bx)$$

with $a = \frac{1}{4}$, $b = \frac{1}{3}$. Exact solution:

$$u_*(x) = a \sin \pi x + b$$
 for $0 \le x \le 1$.

Note that $u_* \geq b$.

The modified adjoint source condition is satisfied for initial guess

$$\overline{u}\equiv u_*(1).$$

Consider modified variational Lavrentiev with initial guess \overline{u} and parameter $\gamma_{\delta}=\delta^{2/3}$.

δ	$100 \cdot \delta / \ f\ $	$\ u_{\gamma_{\delta}}^{\delta}-u_{*}\ $	$\ u_{\gamma_{\delta}}^{\delta}-u_{*}\ /\delta^{1/3}$
$1.0 \cdot 10^{-2}$	$1.25 \cdot 10^{0}$	$7.00 \cdot 10^{-2}$	0.32
$ 5.0 \cdot 10^{-3}$	$6.25 \cdot 10^{-1}$	$4.66 \cdot 10^{-2}$	0.27
$ 2.5 \cdot 10^{-3}$	$3.12 \cdot 10^{-1}$	$3.87 \cdot 10^{-2}$	0.29
$ 1.2 \cdot 10^{-3}$	$1.56 \cdot 10^{-1}$	$3.01 \cdot 10^{-2}$	0.28
$ 6.2 \cdot 10^{-4}$	7.81 \cdot 10 ⁻²	$2.22 \cdot 10^{-2}$	0.26
$ 3.1 \cdot 10^{-4}$	$3.90 \cdot 10^{-2}$	$1.60 \cdot 10^{-2}$	0.24
$ 1.6 \cdot 10^{-4}$	$1.95 \cdot 10^{-2}$	$1.08 \cdot 10^{-2}$	0.20
$ 7.8 \cdot 10^{-5}$	$9.76 \cdot 10^{-3}$	$7.54 \cdot 10^{-3}$	0.18
$3.9 \cdot 10^{-5}$	$4.88 \cdot 10^{-3}$	$4.70 \cdot 10^{-3}$	0.14

Table: Numerical results for second example

5 Conclusions

Conclusions

- More examples.
- · Other source conditions.
- · Get rid of cocoercivess.
- Many thanks for invitation.
- Many thanks to Zuhair.
- · Many thanks for your attention.

